892 resultados para Flexor digitorum superficialis, flexor digitorum profundus, hand,tendon
Resumo:
Subjects with temporomandibular disorders (TMDs) have been found to have clinical signs and symptoms of cervical dysfunction. Although many studies have investigated the relationship between the cervical spine and TMD, no study has evaluated the endurance capacity of the cervical muscles in patients with TMD. Thus the objective of this study was to determine whether patients with TMD had a reduced endurance of the cervical flexor muscles at any level of muscular contraction when compared with healthy subjects. One hundred and forty-nine participants provided data for this study (49 subjects were healthy, 54 had myogenous TMD, and 46 had mixed TMD). There was a significant difference in holding time at 25% MVC between subjects with mixed TMD when compared to subjects with myogenous TMD and healthy subjects. This implies that subjects with mixed TMD had less endurance capacity at a lower level of contraction (25% MVC) than healthy subjects and subjects with myogenous TMD. No significant associations between neck disability, jaw disability, clinical variables and neck flexor endurance test were found.
Resumo:
Most patients with temporomandibular disorders (TMD) have been shown to have cervical spine dysfunction. However, this cervical dysfunction has been evaluated only qualitatively through a general clinical examination of the cervical spine.
Resumo:
A method for quantifying nociceptive withdrawal reflex receptive fields in human volunteers and patients is described. The reflex receptive field (RRF) for a specific muscle denotes the cutaneous area from which a muscle contraction can be evoked by a nociceptive stimulus. The method is based on random stimulations presented in a blinded sequence to 10 stimulation sites. The sensitivity map is derived by interpolating the reflex responses evoked from the 10 sites. A set of features describing the size and location of the RRF is presented based on statistical analysis of the sensitivity map within every subject. The features include RRF area, volume, peak location and center of gravity. The method was applied to 30 healthy volunteers. Electrical stimuli were applied to the sole of the foot evoking reflexes in the ankle flexor tibialis anterior. The RRF area covered a fraction of 0.57+/-0.06 (S.E.M.) of the foot and was located on the medial, distal part of the sole of the foot. An intramuscular injection into flexor digitorum brevis of capsaicin was performed in one spinal cord injured subject to attempt modulation of the reflex receptive field. The RRF area, RRF volume and location of the peak reflex response appear to be the most sensitive measures for detecting modulation of spinal nociceptive processing. This new method has important potential applications for exploring aspects of central plasticity in volunteers and patients. It may be utilized as a new diagnostic tool for central hypersensitivity and quantification of therapeutic interventions.
Resumo:
Contracted flexor tendon leading to flexural deformity is a common congenital defect in cattle. Arthrogryposis is a congenital syndrome of persistent joint contracture that occurs frequently in Europe as a consequence of Schmallenberg virus infection of the dam. Spastic paresis has a hereditary component, and affected cattle should not be used for breeding purposes. The most common tendon avulsion involves the deep digital flexor tendon. Tendon disruptions may be successfully managed by tenorrhaphy and external coaptation or by external coaptation alone. Medical management alone is unlikely to be effective for purulent tenosynovitis.
Resumo:
BACKGROUND: In equine laminitis, the deep digital flexor muscle (DDFM) appears to have increased muscle force, but evidence-based confirmation is lacking. OBJECTIVES: The purpose of this study was to test if the DDFM of laminitic equines has an increased muscle force detectable by needle electromyography interference pattern analysis (IPA). ANIMALS AND METHODS: The control group included six Royal Dutch Sport horses, three Shetland ponies and one Welsh pony [10 healthy, sound adults weighing 411 ± 217 kg (mean ± SD) and aged 10 ± 5 years]. The laminitic group included three Royal Dutch Sport horses, one Friesian, one Haflinger, one Icelandic horse, one Welsh pony, one miniature Appaloosa and six Shetland ponies (14 adults, weight 310 ± 178 kg, aged 13 ± 6 years) with acute/chronic laminitis. The electromyography IPA measurements included firing rate, turns/second (T), amplitude/turn (M) and M/T ratio. Statistical analysis used a general linear model with outcomes transformed to geometric means. RESULTS: The firing rate of the total laminitic group was higher than the total control group. This difference was smaller for the ponies compared to the horses; in the horses, the geometric mean difference of the laminitic group was 1.73 [geometric 95% confidence interval (CI) 1.29-2.32], and in the ponies this value was 1.09 (geometric 95% CI 0.82-1.45). CONCLUSION AND CLINICAL RELEVANCE: In human medicine, an increased firing rate is characteristic of increased muscle force. Thus, the increased firing rate of the DDFM in the context of laminitis suggests an elevated muscle force. However, this seems to be only a partial effect as in this study, the unchanged turns/second and amplitude/turn failed to prove the recruitment of larger motor units with larger amplitude motor unit potentials in laminitic equids.
Resumo:
Vertebrate limb tendons are derived from connective cells of the lateral plate mesoderm. Some of the developmental steps leading to the formation of vertebrate limb tendons have been previously identified; however, the molecular mechanisms responsible for tendinous patterning and maintenance during embryogenesis are largely unknown. The eyes absent (eya) gene of Drosophila encodes a novel nuclear protein of unknown molecular function. Here we show that Eya1 and Eya2, two mouse homologues of Drosophila eya, are expressed initially during limb development in connective tissue precursor cells. Later in limb development, Eya1 and Eya2 expression is associated with cell condensations that form different sets of limb tendons. Eya1 expression is largely restricted to flexor tendons, while Eya2 is expressed in the extensor tendons and ligaments of the phalangeal elements of the limb. These data suggest that Eya genes participate in the patterning of the distal tendons of the limb. To investigate the molecular functions of the Eya gene products, we have analyzed whether the highly divergent PST (proline-serine-threonine)-rich N-terminal regions of Eya1–3 function as transactivation domains. Our results demonstrate that Eya gene products can act as transcriptional activators, and they support a role for this molecular function in connective tissue patterning.
Resumo:
CCBE S. XVI,
Resumo:
The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed (p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.
Resumo:
Despite the evidence of greater fatigability of the cervical flexor muscles in neck pain patients, the effect of unilaterality of neck pain on muscle fatigue has not been investigated. This study compared myoelectric manifestations of sternocleidomastoid (SCM) and anterior scalene (AS) muscle fatigue between the painful and non-painful sides in patients with chronic unilateral neck pain. Myoelectric signals were recorded from the sternal head of SCM and the AS muscles bilaterally during sub-maximal isometric cervical flexion contractions at 25% and 50% of the maximum voluntary contraction (MVC). The time course of the mean power frequency, average rectified value and conduction velocity of the electromyographic signals were calculated to quantify myoelectric manifestations of muscle fatigue. Results revealed greater estimates of the initial value and slope of the mean frequency for both the SCM and AS muscles on the side of the patient's neck pain at 25% and 50% of MVC. These results indicate greater myoelectric manifestations of muscle fatigue of the superficial cervical flexor muscles ipsilateral to the side of pain. This suggests a specificity of the effect of pain on muscle function and hence the need for specificity of therapeutic exercise in the management of neck pain patients. (C) 2003 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.
Resumo:
Study Design. Cross-sectional study. Objective. The present study compared activity of deep and superficial cervical flexor muscles and craniocervical flexion range of motion during a test of craniocervical flexion between 10 patients with chronic neck pain and 10 controls. Summary of Background Data. Individuals with chronic neck pain exhibit reduced performance on a test of craniocervical flexion, and training of this maneuver is effective in management of neck complaints. Although this test is hypothesized to reflect dysfunction of the deep cervical flexor muscles, this has not been tested. Methods. Deep cervical flexor electromyographic activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the superficial neck muscles ( sternocleidomastoid and anterior scalene). Root mean square electromyographic amplitude and craniocervical flexion range of motion was measured during five incremental levels of craniocervical flexion in supine. Results. There was a strong linear relation between the electromyographic amplitude of the deep cervical flexor muscles and the incremental stages of the craniocervical flexion test for control and individuals with neck pain ( P = 0.002). However, the amplitude of deep cervical flexor electromyographic activity was less for the group with neck pain than controls, and this difference was significant for the higher increments of the task ( P < 0.05). Although not significant, there was a strong trend for greater sternocleidomastoid and anterior scalene electromyographic activity for the group with neck pain. Conclusions. These data confirm that reduced performance of the craniocervical flexion test is associated with dysfunction of the deep cervical flexor muscles and support the validity of this test for patients with neck pain.
Resumo:
Background and Purpose. A new method of dynamometry has been developed to measure the performance of the craniocervical (CC) flexor muscles by recording the torque that these muscles exert on the cranium around the CC junction. This report describes the method, the specifications of the instrument, and the preliminary reliability data. Subjects and Methods. For the reliability study, 20 subjects (12 subjects with a history of neck pain, 8 subjects without a history of neck pain) performed, on 2 occasions, maximal voluntary isometric contraction (MVIC) tests of CC flexion in 3 positions within the range of CC flexion and submaximal sustained tests (20% and 50% of MVIC) in the middle range of CC flexion (craniocervical neutral position). Reliability coefficients were calculated to establish the test-retest reliability of the measurements. Results. The method demonstrated good reliability over 2 sessions in the measurement of MVIC (intraclass correlation coefficient [ICC] =.79-.93, SEM=0.6-1.4 N-m) and in the measurement of steadiness (standard deviation of torque amplitude) of a sustained contraction at 20% of NMC (ICC=.74-.80, SEM=0.01 N-m), but not at 50% of MVIC (ICC=.07-.76, SEM=0.04-0.13 N-m). Discussion and Conclusion. The new dynamometry method appears to have potential clinical application in the measurement of craniocervical flexor muscle performance.
Resumo:
AIM: To investigate the presence of surface-active phospholipid (SAPL, or surfactant) in equine tendon and tendon sheath fluid. METHODS: The left front flexor tendon and sheath were removed from five Thoroughbred horses. Phospholipid was extracted from tendon sheath fluid using Folch reagent and quantified using spectroscopy. Transmission electron microscopy (TEM) was used to observe the tendon surfaces. RESULTS: The presence of phospholipid (90.6 (SD 4.3) mu g/ml) in tendon sheath fluid, plus the appearance of oligolamellar layers and lamellar bodies on the tendon surface were indicative of SAPL. CONCLUSIONS: Evidence of SAPL was found in equine tendon, and may have a similar lubricating function as reported for synovial joints. CLINICAL RELEVANCE: These findings may have important implications for normal tendon function and possible therapeutic adjuncts for tendon and tendon sheath injuries.
Resumo:
Objective: The purpose of this study was to investigate whether an endurance-strength training program is effective in reducing myoelectric manifestations of sternocleidomastoid (SCM) and anterior scalene (AS) muscle fatigue which have been found to be greater in people with chronic neck pain. Methods: Fifty-eight female patients with chronic non-severe neck pain were randomized into one of two 6-week exercise intervention groups: an endurance-strength training regime for the cervical flexor muscles or a referent exercise intervention involving low load retraining of the cranio-cervical flexor muscles. The primary outcomes were a change in maximum voluntary contraction (MVC) force and change of the initial value and rate of change of the mean frequency, average rectified value and conduction velocity detected from the SCM and AS muscles during sub-maximal isometric cervical flexion contractions at 50, 25 and 10% MVC. Results: At the 7th week follow-up assessment, the endurance-strength training group revealed a significant increase in MVC force and a reduction in the estimates of the initial value and rate of change of the mean frequency for both the SCM and AS muscles (P < 0.05). Both exercise groups reported a reduced average intensity of neck pain and reduced neck disability index score (P < 0.05). Conclusions: An endurance-strength exercise regime for the cervical flexor muscles is effective in reducing myoelectric manifestations of superficial cervical flexor muscle fatigue as well as increasing cervical flexion strength in a group of patients with chronic non-severe neck pain. Significance: Provision of load to challenge the neck flexor muscles is required to reduce the fatigability of the SCM and AS muscles in people with neck pain. Improvements in cervical muscle strength and reduced fatigability may be responsible for the reported efficacy with this type of exercise program. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All fights reserved.
Resumo:
A novel surface electromyographic (EMG) technique was recently described for the detection of deep cervical flexor muscle activity. Further investigation of this technique is warranted to ensure EMG activity from neighbouring muscles is not markedly influencing the signals recorded. This study compared deep cervical flexor (DCF) muscle activity with the activity of surrounding neck and jaw muscles during various anatomical movements of the neck and jaw in 10 volunteer subjects. DCF EMG activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid, anterior scalene, masseter and suprahyoid muscles. Positioned in supine, subjects performed isometric cranio-cervical flexion, cervical flexion, right and left cervical rotation,jaw clench and resisted jaw opening. Across all movements examined, EMG amplitude of the DCF muscles was greatest during neck movements that would require activity of the DCF muscles, particularly during cranio-cervical flexion, their primary anatomical action. The actions of jaw clench and resisted jaw opening demonstrated significantly less DCF EMG activity than the cranio-cervical flexion action (p < 0.05). Across all other movements, the neighbouring neck and jaw muscles demonstrated greatest EMG amplitude during their respective primary anatomical actions, which occurred in the absence of increased EMG amplitude recorded from the DCF muscles. The finding of substantial EMG activity of the DCF muscles only during neck actions that would require their activity, particularly cranio-cervical flexion, and not during actions involving the jaw, provide further assurance that the majority of myoelectric signals detected from the nasopharyngeal electrode are from the DCF muscles. (C) 2005 Elsevier Ltd. All rights reserved.