107 resultados para Flammability.
Resumo:
利用微重力条件下向外传播的球形火焰,对贫燃极限附近甲烷/空气预混火焰的层流燃烧速度进行了测量,得到当量比从0.512(本文微重力实验中测定的可燃极限)到0.601范围内的零拉伸层流燃烧速度,并与前人实验数据和使用3种化学反应动力学模型的计算结果进行了比较. 本文实验结果与已有的微重力实验数据非常接近,而其他研究者在常重力实验中得到的数据大多都明显高于微重力实验结果. 不同化学反应机理预测的燃烧速度比微重力实验测量值大得多,这是因为它们主要是用远离可燃极限的燃烧速度校核的
Resumo:
本文成功搭建了适用于中国科学院力学研究所国家微重力实验室(NMLC)落塔的高压对冲火焰实验系统, 并首次开展了微重力条件下加压对冲火焰实验, 测定了一定张力条件下甲烷/空气层流预混火焰的熄灭极限. 实验结果表明, 随着压力的增高, 甲烷/空气混合气体的可燃极限呈先增后降的非单调变化趋势, 峰值发生在0.4 MPa左右. 浮力对加压下微弱火焰熄灭极限的影响明显, 在常重力条件下, 相同张力下的熄灭极限较微重力条件下的偏大, 峰值出现的压力略低. 微重力条件下的实验结果与使用CHEMKIN的数值模拟的结果相当一致.
Resumo:
Combination of Ni2O3 and solid acid with Bronsted acid sites and Lewis acid sites (such as HZSM-5 and H-beta) could dramatically improve fire retardancy of polyolefin, including polypropylene and linear low-density polyethylene. This is mainly attributed to the formation of a large amount of residual char from degradation products of polyolefin in the intermediate stage of combustion. Thus, the amount of flammable components diffusing into the flame zone was small.
Resumo:
Effects of organically modified montmorillonites (OMMTs) with different type and amount of modifiers on flame retardancy of polystyrene (PS) have been studied. The results from morphology analysis, gas chromatography-mass spectrometry and cone calorimeter have showed different mechanisms for the flame retardancy of PS/OMMTs composites, depending on surface property of OMNTrs. One is the catalysis of acid sites formed on the surface of octadecylammonium modified MMT (c-MMT) via Hoffman decomposition on the carbonization of degradation products, which promotes the formation of clay-enriched char barrier.
Resumo:
The effect of combination between a trace of halogenated compounds (such as ferric chloride and ammonium bromide) and Ni2O3 particles on the carbonization of polypropylene (PP) was investigated during combustion. The results showed a synergistic catalysis of combined halogenated compounds with Ni2O3 in promoting the formation of the residual char during combustion. The investigation on the promotion mechanism showed that halide radical releasing from halogen-containing additives worked as a catalyst to accelerate dehydrogenation-aromatization of degradation products of PR which promote the degradation products to form the residual char catalyzed by nickel catalyst.
Resumo:
Effects of multiwalled carbon nanotubes (MWCNTs) and Ni2O3 on the flame retardancy of linear low density polyethylene (LLDPE) have been studied. A combination of MWCNTs and Ni2O3 showed a synergistic effect in improving the flame retardancy of LLDPE compared with LLDPE composites containing MWCNTs or Ni2O3 alone. As a result, the peak value of heat release rate measured by cone calorimeter was obviously decreased in the LLDPE/MWCNTs/Ni2O3 Composites. According to the results from rheological tests, carbonization experiments, and structural characterization of residual char, the improved flame retardancy was partially attributed to the formation of a networklike structure due to the good dispersion of MWCNTs in LLDPE matrix, and partially to the carbonization of degradation products of LLDPE catalyzed by Ni catalyst originated from Ni2O3, More importantly, both viscoelastic characteristics and catalytic carbonization behavior of LLDPE/MWCNTs/Ni2O3 composites acted in concert to result in a synergistic effect in improving the flame retardancy.
Resumo:
Nanocomposites based on poly(iminosebacoyl imino-decamethylene) (PA1010) and multiwall carbon nanotubes (MWNTs) were successfully prepared by melt blending technique. environmental scanning electron microscope micrographs of the fracture surfaces showed that not only is there an evenly dispersion of MWNTs throughout the PA1010 matrix but also a strongly interfacial adhesion with the matrix. The combined effect of more defects on MWNTs and low temperature buckling fracture is mainly responsible for the broken tubes. Differential scanning calorimeter results showed that the MWNTs acted as a nucleation agent and increased the crystallization rate and decreased crystallite size. In the linear region, rheological measurements showed a distinct change in the frequency dependence of storage modulus, loss modulus, and complex viscosity particularly at low frequencies. We conclude that the rheological percolation threshold might occur when the content of MWNTs is over 2 wt% in the composites.
Resumo:
The non-flammability of ionic liquids (ILs) is often highlighted as a safety advantage of ILs over volatile organic compounds (VOCs), but the fact that many ILs are not flammable themselves does not mean that they are safe to use near fire and/or heat sources; a large group of ILs ( including commercially available ILs) are combustible due to the nature of their positive heats of formation, oxygen content, and decomposition products.
Resumo:
Estágio de natureza profissional para obtenção do grau de Mestre em Engenharia Química
Resumo:
La substitution est une méthode de prévention primaire qui permet l’élimination à la source des dangers pour les travailleurs. Une des étapes de la démarche est la comparaison des options afin de procéder au choix final. Divers indices de comparaison, basés sur des paramètres physicochimiques, sanitaires et environnementaux des substances, permettent de guider ce choix. Toutefois, aucune évaluation de ces indices n’a été effectuée dans le cas de la substitution des solvants. Une recherche de développement a été entreprise afin de proposer une méthodologie améliorée de comparaison des solvants. La démarche d’analyse de substitution et la comparaison des options de remplacement à l’aide du rapport de danger de vapeur (« Vapour Hazard Ratio », VHR) ont été appliquées à un cas réel de substitution de solvants en entreprise. Trois indices de potentiel de surexposition (IPS) (VHR, « Måleteknisk Arbejdshygiejnisk Luftbehov » (MAL) et « SUBstitution FACtor » (SUBFAC)) et trois indices globaux de hiérarchisation des dangers (indice air (ψiair), « Indiana Relative Chemical Hazard Score » (IRCHS) et « Final Hazard Score » (FHS)) ont été évalués et comparés à partir de listes de 56 et 67 solvants respectivement. La problématique de la non-idéalité des mélanges a aussi été considérée par rapport aux IPS par l’évaluation et la comparaison de 50 mélanges de solvant. Une méthodologie d’établissement d’une valeur limite d’exposition (VLE), pour les solvants n’en possédant pas, a été développée par modélisation de type relations quantitatives propriété-propriété (QPPR). La modélisation QPPR des VLE, effectuée sur une liste de 88 solvants possédant une VLE, a été effectuée à partir des coefficients de partage octanol:air, octanol:eau, sang:air et des constantes métaboliques. L’étude de cas a montré que l’utilisation du VHR facilitait la comparaison des options, bien qu’elle puisse se heurter à l’absence de VLE. Les indices VHR et SUBFAC ont été identifiés comme des méthodes très proches, caractérisées par une forte corrélation (R=0,99) alors que l’indice MAL se distingue des deux autres IPS par une perte d’information sur la volatilité résultant en une corrélation plus faible avec le VHR (R=0,75). L’impact de la non idealité, évalué par le calcul de coefficients d’activité sur une série de 50 mélanges, a permis d’établir que les ratios entre les indices VHR corrigés et non corrigés variaient entre 0,57 et 2,7, suggérant un facteur de sécurité de cinq lors de la comparaison de mélanges. Les analyses de corrélation et de sensibilité ont montré que les indices de hiérarchisation des dangers différaient de façon importante sur leur prise en compte de paramètres comme la volatilité, les VLE, l’exposition cutanée, l’inflammabilité, la cancérogénicité et les divers paramètres environnementaux. Aucun de ces indices ne peut être recommandé pour la substitution des solvants. Deux modèles QPPR ont été développés afin de prédire des VLE et des VHR, et 61 % et 87 % des VHR prédits variaient respectivement d’un facteur maximal de deux et de cinq par rapport aux VHR calculés. Nos résultats mènent à proposer une démarche améliorée de comparaison en deux étapes. Après un tri selon des critères prioritaires de santé, de sécurité et d’environnement, la comparaison devrait se baser sur le calcul du VHR tout en considérant d’autres paramètres selon la situation concrète de l’entreprise ou du procédé. La comparaison devra tenir compte de la non-idéalité pour les mélanges, et de VLE estimées pour les solvants n’en possédant pas.
Resumo:
Poly(methyl methacrylate)/clay nanocomposites were prepared by melt mixing using a montmorillonite-rich clay (MMT). The clay in natura was treated with acrylic acid to facilitate the dispersion in the polymer matrix. A masterbatch of PMMA/clay was prepared and combined with the pure PMMA and then subjected to extrusion process using singlescrew and twin-screw extruders followed by injection. Nanocomposites were processed with clay contents of 1, 3, 5 and 8 wt.%. The effect of shear processing on the morphology of the nanocomposites was evaluated by XRD, SEM and TEM. Thermal and mechanical properties of the nanocomposites were investigated through TGA, DSC, HDT, VICAT, tensile and impact tests, to evaluate the effect of the addition of clay to the PMMA matrix. Flammability tests were also conducted to investigate the effect of the addition of clay on the flame retardation properties. SEM images of the nanocomposites indicated the presence of clay agglomerates, which resulted in the reduction of properties such as thermal stability, mechanical strength and impact resistance, and increased the rate of burning for materials processed by both extrusion routes
Resumo:
In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment
Resumo:
In the present research work, composites were prepared using pine apple leaf fibres (PALF) as reinforcement with unsaturated polyester resin as matrix, incorporating with fire retardant at different compositions. The PALF was obtained from the decortication of pine apple leaves obtained from Ramada 4 from Ielmo Marinho in the State of Rio Grande do Norte. The unsaturated polyester resin and the catalyzer were bought from the local establishment. The fire retardant, aluminium tri-hydroxide - Al(OH)3 was donated by Alcoa Alumínio S.A and was used in the proportions of 20%, 40% and 60% w/w. Initially the fibres were treated with 2% NaOH for 1 hour, to remove any impurities present on the fibre surface, such as wax, fat, pectin and pectate, in order to have a better adsorption of the fibres with the matrix as well as the flame retardant. The fibre mat was prepared in a mat preparator by immersion, developed in the Textile Engineering Laboratory, at the UFRN. The composites (300x300x3 mm) were prepared by compression molding and the samples (150x25x3 mm) for analysis of the properties were cut randomly using a laser cutter. Some of the cut samples were used to measure the smoke emission and fire resistance using UL94 standard. Mechanical tension-extension and flexural properties were carried in CTGás RN and the Laboratório de Metais e Ensaios Mecânicos Engenharia de Materiais UFRN , as well as SEM studies were carried out at Núcleo de Estudos em Petróleo e Gás Natural - UFRN . From the observed results, it was noted that, there was no marked influence of the fire retardant on the mechanical properties. Also in the water absorption test, the quantity of water absorbed was less in the sample with higher concentration of fire retardant. It was also observed that the increase in the proportion of the fire retardant increased the time of burning, may be due to the compactness of the composite due to the presence of fire retardant as a filling material even though it was meant to reduce the rate of inflammability of the composite
Resumo:
Use of natural fibres as a reinforcement material in the manufacture of composites show a series of advantages: availability, biodegradability, low weight and regeneration in relation to synthetic fibres, thus justifying its utilization. In the present research work, composites were developed with chicken feathers (KF), using unsaturated polyester resin as matrix, for diversified applications, mainly in the furniture/timber industry.At present, in Brazil the chicken feathers are used as part of the animal feed, even though this material possesses low aggregated value. The chicken feathers are hollow, light and resistant. After washing with water at room temperature, a part of the chicken feathers were treated with 2% NaOH. Composites were manufactured using treated and untreated chicken feathers with unsaturated orthothalic polyester resin and 1% peroxide as catalyser, obtained in the commerce. Samples with size 150x25x3 mm for mechanical tests were cut by laser in the composite plate. Mechanical analyses were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN. All the analyses were in accordance with ASTM standards. SEM analyses were also carried out on the samples.In the analyses of the results obtained, it was observed that the composites made with untreated chicken feathers showed better results (Traction 11.406 MPa and 9.107 MPa Bending 34.947 and 20.918 MPa for samples with and without treatment respectively) compared to the composite with treated feathers. Very low values of the water absorption results, evidenced the impermeability characteristic of the feathers. From the SEM images, the structure, fracture and the fibre/matrix adsorption can be evidenced. In the flammability test, it was observed that despite the feathers having sulfur as a constituent, natural inhibitor of flame, no burning support of the composites, because the manufacturing process of the composite