959 resultados para Fission track dating


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The basic process of an exotic decay mode namely P-delayed fission is simply introduced. The progress status of the study in the world is essentialized. The observation of P-delayed fission of Ac-228 is reported. The radium was radiochemically separated from natural thorium. Thin Ra sources in which Ac-228 was got through Ra-228 ->(beta-) Ac-228 were prepared for observing fission fragments from beta-delayed fission Ac-228. They exposed to the mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2) x 10(-12).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radium was radiochemically separated from natural thorium. Thin Ra-228 ->beta Ac-228 sources were prepared and exposed to mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2)x10(-12).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The West Shandong Uplift and its adjacent basins, with same evolutional history before Mesozoic, are an important basin-orogenic systems in North China. After late Mesozoic, tectonic differentiation between basin and orogenic belt gradually displayed in the study area. The Boxing sag is a part of Jiyang Depression near to West Shandong Uplift, in which the whole Mesozoic and Cenozoic strata are preserved. Based on the analysis of sedimentary records in the Boxing sag, the Cenozoic structural and sedimentary evolutions in Boxing Sag and its response to Western Shandong uplift are discussed in this dissertation. The main conclusions in this research are presented as follows. Based on Seismic and well logging profile interpretation, fault growth index, thickness difference between bottom wall and top wall and fault activity rate from Eocene to Pliocene are studied. Boxing sag had three main faults, NE, NW and NEE trending faults. Research shows that the activity of the NW trending fault in the Boxing sag became weaken from E1-2S4 to N2m gradually. The evolution of NE and the NEE trending fault can be divided into three episodes, from E1-2k to E2s4, from E2s3 to E3s1, from N2m to E3d. The analysis of Paleogene samples of heavy mineral assemblages shows that metamorphic rocks represented by garnet, intermediate-acid igneous rocks represented by the assemblage of apatite, zircon and tourmaline became less from E1-2k to N2g, and sedimentary rocks represented by the assemblage of pyrite, barite and limonite also became less. Intermediate-basic igneous rocks represented by the assemblage of leucoxene, rutile and ilmenite and metamorphic rocks represented by epidote became more and more. Electronic microprobe analysis shows that glaucophane and barroisite are existed in Kongdian Formation and the 4th member of Shahejie Formation, and they demonstrate that Western Shandong and Eastern Shandong are all the source regions of the Boxing Sag, and they also indicate that oceanic crust existed before the collision between the Yangtze and North China continent. The fact that Eastern Shandong is the source region of Boxing Sag also indicates that Western Shandong was not high enough to prevent sediment from Eastern Shandong at E1-2k and E2s4. The results of the dating of five detrital zircons of Boxing Sag show Kongdian Formation and the 4th member of Shahejie Formation have the age peaks of 2800Ma and 700-800. It means that Eastern Shandong is the source region of Boxing Sag at early Paleogene and Western Shandong is not high enough to prevent the sediment from Eastern Shandong. The ages of 160-180 and 220-260 Ma, which exist in the Guantao Formation and Paleogene, are common in Eastern Shandong and rare in Western Shandong,and it implied that Western Shandong is a low uplift at 24Ma. The Paleogene strata have almost same age groups, while the Guantao Formation has significant variations of age groups, and this indicates that Boxing Sag and Western Shandong uplift had taken place tremendous changes. The results of apatite fission track in Boxing sag show that three times uplifts happened at the source region at 60 Ma, 45Ma and 15Ma respectively, and the Boxing sag experienced two subsidences at 60Ma, 45Ma and one uplift at 20Ma.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Eastern Himalayan Syntaxis (EHS) is one of the strongest deformation area along the Himalayan belt resulted from the collision between Indian plate and the Eurasian Plate since the 50~60Ma, and has sensitivity tracked and preserved the whole collisional processes. It should depend on the detail geological investigations to establish the deformational accommodate mode, and the uplift history, to elucidate the deep structure and the crust-mantle interaction of the Tibet Plateau of the EHS. The deep-seated (Main Mantle Thrusts) structures were exhumed in the EHS. The MMT juxtapose the Gangdese metamorphic basement and some relic of Gangdese mantle on the high Himalayan crystalline series. The Namjagbawa group which is 1200~1500Ma dated by U/Pb age of zircon and the Namla group which is 550Ma dated by U/Pb age of zircon is belong to High Himalayan crystalline series and Gangdese basement respectively. There is some ophiolitic relic along the MMT, such as metamorphic ocean mantle peridotite and metamorphic tholeiite of the upper part of ocean-crust. The metamorphic ocean mantle peridotites (spinel-orthopyroxene peridotite) show U type REE patterns. The ~(87)Sr/~(86)Sr ratios were, 0.709314~0.720788, and the ~(143)Nd/~(144)Nd ratios were 0.512073~0.512395, plotting in the forth quadrant on the ~(87)Sr/~(86)Sr-~(143)Nd/~(144)Nd isotope diagram. Some metamorphic basalt (garnet amphibolite) enclosures have been found in the HP garnet-kynite granulite. The garnet amphibolites can be divided two groups, the first group is deplete of LREE, and the second group is flat or rich LREE, and their ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd ratios were 0.70563~0.705381 and 0.512468~0.51263 respectively. Trace element and isotopic characteristics of the garnet amphibolites display that they formed in the E-MORB environment. Some phlogolite amphibole harzburgites, which exhibit extensive replacement by Phl, Amp, Tc and Dol etc, were exhumed along the MMT. The Phl-Amp harzburgites are rich in LREE and LILE, such as Rb, K etc, and depletes Eu (Eu~* = 0.36 ~ 0.68) and HFSE, such as Nb, Ta, Zr, Hf, P, Ti etc. The trace element indicate that the Phl-Amp harzburgites have island arc signature. Their ~(87)Sr/~(86)Sr are varied from 0.708912 to 0.879839, ~(143)Nd/~(144)Nd from 0.511993 to 0.512164, ε Nd from- 9.2 to - 12.6. Rb/Sr isochrone age of the phlogolite amphibole harzburgite shows the metasomatism took place at 41Ma, and the Amp ~(40)Ar/~(39)Ar cooling age indcate the Phl-Amp harzburgite raising at 16Ma. There is an intense crust shortening resulted from the thrust faults and folds in the Cayu block which is shortened more 120km than that of the Lasha block in 35~90Ma. With the NE corner of the India plate squash into the Gangdese arc, the sinistral Pai shear fault and the dextral Aniqiao shear fault on the both sides of the Great bent of Yalun Zangbu river come into active in 21~26Ma. On the other hand, the right-lateral Gongrigabu strike-slip faults come into activity at the same period, a lower age bound for the Gongrigabu strike-slip fault is estimated to be 23~24Ma from zircon of ion-probe U/Pb thermochronology. The Gongrigabu strike-slip faults connect with the Lhari strike-slip fault in the northwestern direction and with the Saganing strike-slip at the southeastern direction. Another important structure in the EHS is the Gangdese detachment fault system (GDS) which occurs between the sedimental cover and the metamorphic basement. The lower age of the GDS is to be 16Ma from the preliminary 40Ar/39Ar thermochronology of white mica. The GDS is thought to be related to the reverse of the subducted Indian crust and the fast uplift of the EHS. Structural and thermochronology investigation of the EHS suggest that the eastern Tibet and the western Yunnan rotated clockwise around the EHS in the period of 35~60Ma. Later, the large-scale strike-slip faults (RRD, Gaoligong and Saganing fault) prolongate into the EHS, and connect with the Guyu fault and Gongrigabu fault, which suggest that the Indianchia block escape along these faults. Two kind of magmatic rocks in the EHS have been investigated, one is the mantle-derived amphibole gabbro, dioposide diorite and amphibole diorite, another is crust origin biotit-garnet adamellite, biotit-garnet granodiorite and garnet-amphibole-biotite granite. The amphibole gabbro dioposite diorite and amphibole diorite are rich in LREE, and LILE, such as Ba, Rb, Th, K, Sr etc, depleted in HFSE, such as Nb, Ta, Zr, Hf, Ti etc. The ratio of ~(87)Sr/~(86)Sr are from 0.7044 to 0.7048, ~(143)Nd/~(144)Nd are from 0.5126 to 0.5127. The age of the mantle origin magamatic rocks, which result from the partial melt of the raising and decompression anthenosphere, is 8Ma by ~(40)Ar/~(39)Ar dating of amphibole from the diorite. The later crust origin biotite-garnet adamellite, biotite-garnet granodiorite and garnet-amphibole-biotite granite are characterized by aboudance in LREE, and strong depletion of Eu. The ratios of ~(87)Sr-~(86)Sr are from 0.795035 to 0.812028, ~(143)Nd/~(144)Nd from 0.51187 to 0.511901. The ~(40)Ar/~(39)Ar plateau age of the amphibole from the garnet-amphibole-biotite granite is 17.5±0.3Ma, and the isochrone age is 16.8±0.6Ma. Their geochemical characteristics show that the crust-derived magmatic rocks formed from partial melting of the lower curst in the post-collisional environment. A group of high-pressure kaynite-garnet granulites and enclave of high-pressure garnet-clinopyroxene grnulites and calc-silicate grnulites are outcroped along the MMT. The peak metamorphic condition of the high-pressure granulites yields T=800~960 ℃, P=1.4~1.8Gpa, corresponding the condition of 60km depth. The retrograde assemblages of the high-pressure grnulites occur at the condition of T=772.3~803.3 ℃, P=0.63~0.64Gpa. The age of the peak metamorphic assemblages are 45 ~ 69Ma indicated by the zircon U/Pb ion-plobe thermochronology, and the retrograde assemblage ages are 13~26Ma by U/Pb, ~(40)Ar/~(39)Ar thermochronology. The ITD paths of the high-pressure granulites show that they were generated during the tectonic thickening and more rapid tectonic exhumation caused by the subducting of the Indian plate and subsequent break-off of the subducted slab. A great deal of apatite, zircon and sphene fission-track ages, isotopic thermochronology of the rocks in the EHS show that its rapid raising processes of the EHS can be divided into three main periods. There are 35~60Ma, 13~25Ma, 0~3Ma. 3Ma is a turn in the course of raising in the EHS which is characterized by abruptly acceleration of uplifting. The uplift ratios are lower than 1mm .a~(-1) before 3Ma, and higher than 1mm .a~(-1) with a maximum ratio of 30mm .a~(-1) since 3Ma. The bottom (knick point) of the partial anneal belt is 3.8km above sea level in the EHS, and correspond to age of 3Ma determined by fission-track age of apatite. The average uplift ratio is about 1.4 mm .a~(-1) below the knick point. The EHS has raised 4.3km from the surface of 2.36km above sea level since 3Ma estimated by the fossil partial anneal belt of the EHS. We propose a two-stage subduction model (B+A model) basing on Structural, thermochronological, magmatical, metamorphic and geophysical investigations of the EHS. The first stage is the subduction of the Indian continental margin following after the subduction of the Tethys Ocean crust and subsequent collision with the Gangdese arc, and the second stage is the Indian crust injecting into the lower crust and upper mantle of the Tibet plateau. Slab break-off seems to be occurred between these two stages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The newly updated inventory of palaeoecological research in Latin America offers an important overview of sites available for multi-proxy and multi-site purposes. From the collected literature supporting this inventory, we collected all available age model metadata to create a chronological database of 5116 control points (e.g. 14C, tephra, fission track, OSL, 210Pb) from 1097 pollen records. Based on this literature review, we present a summary of chronological dating and reporting in the Neotropics. Difficulties and recommendations for chronology reporting are discussed. Furthermore, for 234 pollen records in northwest South America, a classification system for age uncertainties is implemented based on chronologies generated with updated calibration curves. With these outcomes age models are produced for those sites without an existing chronology, alternative age models are provided for researchers interested in comparing the effects of different calibration curves and age–depth modelling software, and the importance of uncertainty assessments of chronologies is highlighted. Sample resolution and temporal uncertainty of ages are discussed for different time windows, focusing on events relevant for research on centennial- to millennial-scale climate variability. All age models and developed R scripts are publicly available through figshare, including a manual to use the scripts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fission-track method (FTM) in apatite was applied to 45 samples collected in the Serra da Mantiqueira (Mantiqueira mountain range), the Serra do Mar (Mar mountain range), regions next to these mountain ranges and the coastal region between Ubatuba and Santos in the State of São Paulo, Brazil, to study the thermochronology of the South American Platform in southeast Brazil and its influence on Santos and Campos basins. The data presented in this work complement the previously presented data on the same region (Tello Saenz et al., 2003. J. S. Am. Earth Sci. 15, 765-774) with 31 new samples analyzed. The weighted mean of the corrected ages from high Mantiqueira (around 1000 m), (121 +/- 6) Ma, coincides with the South Atlantic opening. The fact that its thermal history starts at a relatively low temperature (similar to 80 degrees C) suggests that the age of similar to 120 Ma would be the formation age of Serra da Mantiqueira due to a rapid pulse, in which tracks had no time to be retained at the closure temperature, that is similar to 120 degrees C. The Serra do Mar presents a more complicated thermal history, with several reactivations indicated by the changes in the slope of its cooling curve. The thermal histories obtained in the regions next to these mountain ranges are compatible with the results mentioned above. The Santos Basin has unconformities that agree with changes in the slope thermal histories of the studied region. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two wafers of the NIST (formerly NBS) glass standard SRM 612 recently irradiated have been compared to the pre-irradiated wafers RT3 and RT4 of glass SRM 962-7, stored for 9 years at 5°C, and SRM 962, stored for 20 years at room temperature. Track area densities on internal surfaces of the glass as well as track size measurements suggest that (1) the old SRM 962 and the more recent SRM 962a calibrations are consistent and (2) annealing of the fission tracks in the pre-irradiated wafers is negligible. This last experimental result enables a direct comparison of contemporary and previous fission track age calibrations. © 1995.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of Molecular Dynamics simulations of thermal spikes has been run in zircon. For two different ensembles: microcanonical one and a combination of microcanonical one acting on the simulation core with Langevin one on the side walls of simulation. Depending on the used ensemble, different track-formation threshold energies were found. When the combined ensemble is carried out, the total energy of the simulations varies with the temperature which can influence how annealing fission-track models should deal with the lattice recovery. A fission-track annealing model is tested with the simulation results. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Geografia - FCT

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The continental margin of southeast Brazil is elevated. Onshore Tertiary basins and Late Cretaceous/Paleogene intrusions are good evidence for post breakup tectono-magmatic activity. To constrain the impact of post-rift reactivation on the geological history of the area, we carried out a new thermochronological study. Apatite fission track ages range from 60.7 +/- 1.9 Ma to 129.3 +/- 4.3 Ma, mean track lengths from 11.41 +/- 0.23 mu m to 14.31 +/- 0.24 mu m and a subset of the (U-Th)/He ages range from 45.1 +/- 1.5 to 122.4 +/- 2.5 Ma. Results of inverse thermal history modeling generally support the conclusions from an earlier study for a Late Cretaceous phase of cooling. Around the onshore Taubate Basin, for a limited number of samples, the first detectable period of cooling occurred during the Early Tertiary. The inferred thermal histories for many samples also imply subsequent reheating followed by Neogene cooling. Given the uncertainty of the inversion results, we did deterministic forward modeling to assess the range of possibilities of this Tertiary part of the thermal history. The evidence for reheating seems to be robust around the Taubate Basin, but elsewhere the data cannot discriminate between this and a less complex thermal history. However, forward modeling results and geological information support the conclusion that the whole area underwent cooling during the Neogene. The synchronicity of the cooling phases with Andean tectonics and those in NE Brazil leads us to assume a plate-wide compressional stress that reactivated inherited structures. The present-day topographic relief of the margin reflects a contribution from post-breakup reactivation and uplift.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In dieser Studie werden strukturgeologische, metamorphe und geochronologische Daten benutzt, um eine Quantifizierung tektonischer Prozesse vorzunehmen, die für die Exhumierung der Kykladischen Blauschiefereinheit in der Ägäis und der Westtürkei verantwortlich waren. Bei den beiden tektonischen Prozessen handelt es sich um: (1) Abschiebungstektonik und (2) vertikale duktile Ausdünnung. Eine finite Verformungsanalyse an Proben der Kykladischen Blauschiefereinheit ermöglicht eine Abschätzung des Beitrags von vertikaler duktiler Ausdünnung an der gesamten Exhumierung. Kalkulationen mit einem eindimensionalen, numerischen Model zeigt, daß vertikale duktile Ausdünnung nur ca. 10% an der gesamten Exhumierung ausmacht. Kinematische, metamorphe und geochronologische Daten erklären die tektonische Natur und die Evolution eines extensionalen Störungssystems auf der Insel Ikaria in der östlichen Ägäis. Thermobarometrische Daten lassen erkennen, daß das Liegende des Störungssystems aus ca. 15 km Tiefe exhumiert wurde. Sowohl Apatit- und Zirkonspaltspurenalter als auch Apatit (U-Th)/He-Alter zeigen, daß sich das extensionale Störungssystem zwischen 11-3 Ma mit einer Geschwindigkeit von ca. 7-8 km/Ma bewegte. Spät-Miozäne Abschiebungen trugen zur Exhumierung der letzten ~5-15 km der Hochdruckgesteine bei. Ein Großteil der Exhumierung der Kykladischen Blauschiefereinheit muß vor dem Miozän stattgefunden haben. Dies wird durch einen Extrusionskeil erklärt, der ca. 30-35 km der Kykladischen Blauschiefereinheit in der Westtürkei exhumierte. 40Ar/39Ar und 87Rb/86Sr Datierungen an Myloniten des oberen Abschiebungskontakts zwischen der Selçuk Decke und der darunterliegenden Ampelos/Dilek Decke der Kykladischen Blauschiefereinheit als auch des unteren Überschiebungskontakts zwischen der Ampelos/Dilek Decke und den darunterliegenden Menderes Decken zeigt, daß sich beide mylonitische Zonen um ca. ~35 Ma formten, was die Existenz eines Spät-Eozänen/Früh-Oligozänen Extrusionskeils beweist.