970 resultados para Fishing effort


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Adjusted mean catches which are calculated discounting the effect of average fishing effort increase the further the lake is from Manaus, Brazil. -from Author

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Máster en Gestión Sostenible de Recursos Pesqueros

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The European standard for gillnetsampling to characterize lake fish communities stratifies sampling effort (i.e., number of nets) within depth strata. Nets to sample benthic habitats are randomly distributed throughout the lake within each depth strata. Pelagic nets are also stratified by depth, but are set only at the deepest point of the lake. Multiple authors have suggested that this design under-represents pelagic habitats, resulting in estimates of whole-lake CPUE and community composition which are disproportionately influenced by ecological conditions of littoral and benthic habitats. To address this issue, researchers have proposed estimating whole-lake CPUE by weighting the catch rate in each depth-compartment by the proportion of the volume of the lake contributed by the compartment. Our study aimed to assess the effectiveness of volume-weighting by applying it to fish communities sampled according to the European standard (CEN), and by a second whole-lake gillnetting protocol (VERT), which prescribes additional fishing effort in pelagic habitats. We assume that convergence between the protocols indicates that volume-weighting provides a more accurate estimate of whole-lake catch rate and community composition. Our results indicate that volume-weighting improves agreement between the protocols for whole-lake total CPUE, estimated proportion of perch and roach and the overall fish community composition. Discrepancies between the protocols remaining after volume-weighting maybe because sampling under the CEN protocol overlooks horizontal variation in pelagic fish communities. Analyses based on multiple pelagic-set VERT nets identified gradients in the density and biomass of pelagic fish communities in almost half the lakes that corresponded with the depth of water at net-setting location and distance along the length of a lake. Additional CEN pelagic sampling effort allocated across water depths and distributed throughout the lake would therefore help to reconcile differences between the sampling protocols and, in combination with volume-weighting, converge on a more accurate estimate of whole-lake fish communities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Exclusive Fishing Zones (EFZs) are a type of place-based management tool often used to mitigate conflicts between fishing sectors by granting fishing rights to one of the sectors. This case study enhances our knowledge of the pre- and post-implementation processes associated with EFZs as well as its consequences for fish stocks and artisanal fishers and their families. The study draws upon interviews with artisanal fishers and key informants related to an EFZ established in 2008 in Colombia (the Chocó-EFZ). The findings of this research indicate that conflicts at sea and on land between artisanal and industrial fisheries triggered the Chocó-EFZ process. Results also show some potential benefits of the Chocó-EFZ including: a) mitigating conflicts between artisanal fishers and industrial shrimpers; b) contributing to the food security of artisanal fishing households and sustaining local fish stocks; c) supporting an existing informal community-based management as well as promoting the development of a co-management regime. Potential negative effects of the Chocó-EFZ include: a) displacement of industrial fishing effort and, b) job loss within the industrial shrimp industry. The findings of this research also indicate that there are multiple factors that jeopardize the effectiveness and continuation of the Chocó-EFZ, some of which include diversity of fisheries, power struggles among stakeholders, and disagreement about exclusive access to fish resources.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring (period when large abundances of larvae are found) northerly wind and wind magnitude were negatively related with LPUE, revealing that environmental effects match with the regional peak in spawning time. Overall, results suggest that management of small, short-lived pelagic species, such as sardine quotas/sustainable yields, should be adapted to a regional scale because of regional environmental variability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reduced economic circumstances havemoved management goals towards higher profit, rather than maximum sustainable yields in several Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, calculation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bioeconomic fishing data were standardized for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch rate levels that were effective for monitoring in simple within-year effort-control rules. However, favourable performance of catch rate indicators was achieved only when a meaningful upper limit was placed on total allowed fishing effort. Themethods and findings will allow improved measures for monitoring fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fundamental aim in fisheries management is to determine an optimal fishing effort for sustainably harvesting from a replenishable resource. The current management objective of Australia's Northern Prawn Fishery is to maximize the long-term net economic return following Australian government policy, resulting in an average recent catch of tiger prawn species of about 1,250 tons only. However, the maximum sustainable catch stated from different studies is around 3,000-4,700 tons. We also evaluated the net profit assuming that there was no buyback scheme in 2005 and the fishing fleet was kept at 89 vessels since 2005 and concluded that 40% more catch on average (2006-2009) and an additional total profit of A$ 17 million ( excluding crew cost) could have been gained in addition to the many millions of dollars of savings in the buyback scheme. These findings have great implications for future management in Australia and elsewhere because there is a grave concern of overfishing worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider estimation of mortality rates and growth parameters from length-frequency data of a fish stock and derive the underlying length distribution of the population and the catch when there is individual variability in the von Bertalanffy growth parameter L-infinity. The model is flexible enough to accommodate 1) any recruitment pattern as a function of both time and length, 2) length-specific selectivity, and 3) varying fishing effort over time. The maximum likelihood method gives consistent estimates, provided the underlying distribution for individual variation in growth is correctly specified. Simulation results indicate that our method is reasonably robust to violations in the assumptions. The method is applied to tiger prawn data (Penaeus semisulcatus) to obtain estimates of natural and fishing mortality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the stock-recruitment and equilibrium yield dynamics for the two species of tiger prawns (Penaeus esculentus and Penaeus semisulcatus) in Australia's most productive prawn fishery: the Northern Prawn Fishery. Commercial trawl logbooks for 1970-93 and research surveys are used to develop population models for these prawns. A population model that incorporates continuous recruitment is developed. Annual spawning stock and recruitment indices are then estimated from the population model. Spawning stock indices represent the abundance of female prawns that are likely to spawn; recruitment indices represent the abundance of all prawns less than a certain size. The relationships between spawning stock and subsequent recruitment (SRR), between recruitment and subsequent spawning stock (RSR), and between recruitment and commercial catch were estimated through maximum-likelihood models that incorporated autoregressive terms. Yield as a function of fishing effort was estimated by constraining to equilibrium the SRR and RSR. The resulting production model was then used to determine maximum sustainable yield (MSY) and its corresponding fishing effort (f(MSY)). Long-term yield estimates for the two tiger prawn species range between 3700 and 5300 t. The fishing effort at present is close to the level that should produce MSY for both species of tiger prawns. However, current landings, recruitment and spawning stock are below the equilibrium values predicted by the models. This may be because of uncertainty in the spawning stock-recruitment relationships, a change in carrying capacity, biased estimates of fishing effort, unreliable catch statistics, or simplistic assumptions about stock structure. Although our predictions of tiger prawn yields are uncertain, management will soon have to consider new measures to counteract the effects of future increases in fishing effort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data from surveys of recreational anglers fishing on three estuaries in eastern Australia reveal highly skewed distributions of catches with many zeros. Such data may be analysed using a two component approach involving a binary (zero/non-zero catch) response and the non-zero catches. A truncated regression model was effective in analysing the non-zero catches. Covariates were incorporated in the modelling, and their critical assessment has led to improved measures of fishing effort for this recreational fishery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The requirement for Queensland, Northern Territory and Western Australian jurisdictions to ensure sustainable harvest of fish resources and their optimal use relies on robust information on the resource status. For grey mackerel (Scomberomorus semifasciatus) fisheries, each of these jurisdictions has their own management regime in their corresponding waters. The lack of information on stock structure of grey mackerel, however, means that the appropriate spatial scale of management is not known. As well, fishers require assurance of future sustainability to encourage investment and long-term involvement in a fishery that supplies lucrative overseas markets. These management and fisher-unfriendly circumstances must be viewed in the context of recent 3-fold increases in catches of grey mackerel along the Queensland east coast, combined with significant and increasing catches in other parts of the species' northern Australian range. Establishing the stock structure of grey mackerel would also immensely improve the relevance of resource assessments for fishery management of grey mackerel across northern Australia. This highlighted the urgent need for stock structure information for this species. The impetus for this project came from the strategic recommendations of the FRDC review by Ward and Rogers (2003), "Northern mackerel (Scombridae: Scomberomorus): current and future research needs" (Project No. 2002/096), which promoted the urgency for information on the stock structure of grey mackerel. In following these recommendations this project adopted a multi-technique and phased sampling approach as carried out by Buckworth et al (2007), who examined the stock structure of Spanish mackerel, Scomberomorus commerson, across northern Australia. The project objectives were to determine the stock structure of grey mackerel across their northern Australian range, and use this information to define management units and their appropriate spatial scales. We used multiple techniques concurrently to determine the stock structure of grey mackerel. These techniques were: genetic analyses (mitochondrial DNA and microsatellite DNA), otolith (ear bones) isotope ratios, parasite abundances, and growth parameters. The advantage of using this type of multi-technique approach was that each of the different methods is informative about the fish’s life history at different spatial and temporal scales. Genetics can inform about the evolutionary patterns as well as rates of mixing of fish from adjacent areas, while parasites and otolith microchemistry are directly influenced by the environment and so will inform about the patterns of movement during the fishes lifetime. Growth patterns are influenced by both genetic and environmental factors. Due to these differences the use of these techniques concurrently increases the likelihood of detecting different stocks where they exist. We adopted a phased sampling approach whereby sampling was carried out at broad spatial scales in the first year: east coast, eastern Gulf of Carpentaria (GoC), western GoC, and the NW Northern Territory (NW NT). By comparing the fish samples from each of these locations, and using each of the techniques, we tested the null hypothesis that grey mackerel were comprised of a single homogeneous population across northern Australia. Having rejected the null hypothesis we re-sampled the 1st year locations to test for temporal stability in stock structure, and to assess stock structure at finer spatial scales. This included increased spatial coverage on the east coast, the GoC, and WA. From genetic approaches we determined that there at least four genetic stocks of grey mackerel across northern Australia: WA, NW NT (Timor/Arafura), the GoC and the east Grey mackerel management units in northern Australia ix coast. All markers revealed concordant patterns showing WA and NW NT to be clearly divergent stocks. The mtDNA D-loop fragment appeared to have more power to resolve stock boundaries because it was able to show that the GoC and east coast QLD stocks were genetically differentiated. Patterns of stock structure on a finer scale, or where stock boundaries are located, were less clear. From otolith stable isotope analyses four major groups of S. semifasciatus were identified: WA, NT/GoC, northern east coast and central east coast. Differences in the isotopic composition of whole otoliths indicate that these groups must have spent their life history in different locations. The magnitude of the difference between the groups suggests a prolonged separation period at least equal to the fish’s life span. The parasite abundance analyses, although did not include samples from WA, suggest the existence of at least four stocks of grey mackerel in northern Australia: NW NT, the GoC, northern east coast and central east coast. Grey mackerel parasite fauna on the east coast suggests a separation somewhere between Townsville and Mackay. The NW NT region also appears to comprise a separate stock while within the GoC there exists a high degree of variability in parasite faunas among the regions sampled. This may be due to 1. natural variation within the GoC and there is one grey mackerel stock, or 2. the existence of multiple localised adult sub-stocks (metapopulations) within the GoC. Growth parameter comparisons were only possible from four major locations and identified the NW NT, the GoC, and the east coast as having different population growth characteristics. Through the use of multiple techniques, and by integrating the results from each, we were able to determine that there exist at least five stocks of grey mackerel across northern Australia, with some likelihood of additional stock structuring within the GoC. The major management units determined from this study therefore were Western Australia, NW Northern Territory (Timor/Arafura), the Gulf of Carpentaria, northern east Queensland coast and central east Queensland coast. The management implications of these results indicate the possible need for management of grey mackerel fisheries in Australia to be carried out on regional scales finer than are currently in place. In some regions the spatial scales of management might continue as is currently (e.g. WA), while in other regions, such as the GoC and the east coast, managers should at least monitor fisheries on a more local scale dictated by fishing effort and assess accordingly. Stock assessments should also consider the stock divisions identified, particularly on the east coast and for the GoC, and use life history parameters particular to each stock. We also emphasise that where we have not identified different stocks does not preclude the possibility of the occurrence of further stock division. Further, this study did not, nor did it set out to, assess the status of each of the stocks identified. This we identify as a high priority action for research and development of grey mackerel fisheries, as well as a management strategy evaluation that incorporates the conclusions of this work. Until such time that these priorities are addressed, management of grey mackerel fisheries should be cognisant of these uncertainties, particularly for the GoC and the Queensland east coast.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-Technical Summary Seafood CRC Project 2009/774. Harvest strategy evaluations and co-management for the Moreton Bay Trawl Fishery Principal Investigator: Dr Tony Courtney, Principal Fisheries Biologist Fisheries and Aquaculture, Agri-Science Queensland Department of Agriculture, Fisheries and Forestry Level B1, Ecosciences Precinct, Joe Baker St, Dutton Park, Queensland 4102 Email: tony.courtney@daff.qld.gov.au Project objectives: 1. Review the literature and data (i.e., economic, biological and logbook) relevant to the Moreton Bay trawl fishery. 2. Identify and prioritise management objectives for the Moreton Bay trawl fishery, as identified by the trawl fishers. 3. Undertake an economic analysis of Moreton Bay trawl fishery. 4. Quantify long-term changes to fishing power for the Moreton Bay trawl fishery. 5. Assess priority harvest strategies identified in 2 (above). Present results to, and discuss results with, Moreton Bay Seafood Industry Association (MBSIA), fishers and Fisheries Queensland. Note: Additional, specific objectives for 2 (above) were developed by fishers and the MBSIA after commencement of the project. These are presented in detail in section 5 (below). The project was an initiative of the MBSIA, primarily in response to falling profitability in the Moreton Bay prawn trawl fishery. The analyses were undertaken by a consortium of DAFF, CSIRO and University of Queensland researchers. This report adopted the Australian Standard Fish Names (http://www.fishnames.com.au/). Trends in catch and effort The Moreton Bay otter trawl fishery is a multispecies fishery, with the majority of the catch composed of Greasyback Prawns (Metapenaeus bennettae), Brown Tiger Prawns (Penaeus esculentus), Eastern King Prawns (Melicertus plebejus), squid (Uroteuthis spp., Sepioteuthis spp.), Banana Prawns (Fenneropenaeus merguiensis), Endeavour Prawns (Metapenaeus ensis, Metapenaeus endeavouri) and Moreton Bay bugs (Thenus parindicus). Other commercially important byproduct includes blue swimmer crabs (Portunus armatus), three-spot crabs (Portunus sanguinolentus), cuttlefish (Sepia spp.) and mantis shrimp (Oratosquilla spp.). Logbook catch and effort data show that total annual reported catch of prawns from the Moreton Bay otter trawl fishery has declined to 315 t in 2008 from a maximum of 901 t in 1990. The number of active licensed vessels participating in the fishery has also declined from 207 in 1991 to 57 in 2010. Similarly, fishing effort has fallen from a peak of 13,312 boat-days in 1999 to 3817 boat-days in 2008 – a 71% reduction. The declines in catch and effort are largely attributed to reduced profitability in the fishery due to increased operational costs and depressed prawn prices. The low prawn prices appear to be attributed to Australian aquacultured prawns and imported aquacultured vannamei prawns, displacing the markets for trawl-caught prawns, especially small species such as Greasyback Prawns which traditionally dominated landings in Moreton Bay. In recent years, the relatively high Australian dollar has resulted in reduced exports of Australian wild-caught prawns. This has increased supply on the domestic market which has also suppressed price increases. Since 2002, Brown Tiger Prawns have dominated annual reported landings in the Moreton Bay fishery. While total catch and effort in the bay have declined to historically low levels, the annual catch and catch rates of Brown Tiger Prawns have been at record highs in recent years. This appears to be at least partially attributed to the tiger prawn stock having recovered from excessive effort in previous decades. The total annual value of the Moreton Bay trawl fishery catch, including byproduct, is about $5 million, of which Brown Tiger Prawns account for about $2 million. Eastern King Prawns make up about 10% of the catch and are mainly caught in the bay from October to December as they migrate to offshore waters outside the bay where they contribute to a large mono-specific trawl fishery. Some of the Eastern King Prawns harvested in Moreton Bay may be growth overfished (i.e., caught below the size required to maximise yield or value), although the optimum size-at-capture was not determined in this study. Banana Prawns typically make up about 5% of the catch, but can exceed 20%, particularly following heavy rainfall. Economic analysis of the fishery From the economic survey, cash profits were, on average, positive for both fleet segments in both years of the survey. However, after the opportunity cost of capital and depreciation were taken into account, the residual owner-operator income was relatively low, and substantially lower than the average share of revenue paid to employed skippers. Consequently, owner-operators were earning less than their opportunity cost of their labour, suggesting that the fleets were economically unviable in the longer term. The M2 licensed fleet were, on average, earning similar boat cash profits as the T1/M1 fleet, although after the higher capital costs were accounted for the T1/M1 boats were earning substantially lower returns to owner-operator labour. The mean technical efficiency for the fleet as a whole was estimated to be 0.67. That is, on average, the boats were only catching 67 per cent of what was possible given their level of inputs (hours fished and hull units). Almost one-quarter of observations had efficiency scores above 0.8, suggesting a substantial proportion of the fleet are relatively efficient, but some are also relatively inefficient. Both fleets had similar efficiency distributions, with median technical efficiency score of 0.71 and 0.67 for the M2 and T1/M1 boats respectively. These scores are reasonably consistent with other studies of prawn trawl fleets in Australia, although higher average efficiency scores were found in the NSW prawn trawl fleet. From the inefficiency model, several factors were found to significantly influence vessel efficiency. These included the number of years of experience as skipper, the number of generations that the skipper’s family had been fishing and the number of years schooling. Skippers with more schooling were significantly more efficient than skippers with lower levels of schooling, consistent with other studies. Skippers who had been fishing longer were, in fact, less efficient than newer skippers. However, this was mitigated in the case of skippers whose family had been involved in fishing for several generations, consistent with other studies and suggesting that skill was passed through by families over successive generations. Both the linear and log-linear regression models of total fishing effort against the marginal profit per hour performed reasonably well, explaining between 70 and 84 per cent of the variation in fishing effort. As the models had different dependent variables (one logged and the other not logged) this is not a good basis for model choice. A better comparator is the square root of the mean square error (SMSE) expressed as a percentage of the mean total effort. On this criterion, both models performed very similarly. The linear model suggests that each additional dollar of average profits per hour in the fishery increases total effort by around 26 hours each month. From the log linear model, each percentage increase in profits per hour increases total fishing effort by 0.13 per cent. Both models indicate that economic performance is a key driver of fishing effort in the fishery. The effect of removing the boat-replacement policy is to increase individual vessel profitability, catch and effort, but the overall increase in catch is less than that removed by the boats that must exit the fishery. That is, the smaller fleet (in terms of boat numbers) is more profitable but the overall catch is not expected to be greater than before. This assumes, however, that active boats are removed, and that these were also taking an average level of catch. If inactive boats are removed, then catch of the remaining group as a whole could increase by between 14 and 17 per cent depending on the degree to which costs are reduced with the new boats. This is still substantially lower than historical levels of catch by the fleet. Fishing power analyses An analysis of logbook data from 1988 to 2010, and survey information on fishing gear, was performed to estimate the long-term variation in the fleet’s ability to catch prawns (known as fishing power) and to derive abundance estimates of the three most commercially important prawn species (i.e., Brown Tiger, Eastern King and Greasyback Prawns). Generalised linear models were used to explain the variation in catch as a function of effort (i.e., hours fished per day), vessel and gear characteristics, onboard technologies, population abundance and environmental factors. This analysis estimated that fishing power associated with Brown Tiger and Eastern King Prawns increased over the past 20 years by 10–30% and declined by approximately 10% for greasybacks. The density of tiger prawns was estimated to have almost tripled from around 0.5 kg per hectare in 1988 to 1.5 kg/ha in 2010. The density of Eastern King Prawns was estimated to have fluctuated between 1 and 2 kg per hectare over this time period, without any noticeable overall trend, while Greasyback Prawn densities were estimated to have fluctuated between 2 and 6 kg per hectare, also without any distinctive trend. A model of tiger prawn catches was developed to evaluate the impact of fishing on prawn survival rates in Moreton Bay. The model was fitted to logbook data using the maximum-likelihood method to provide estimates of the natural mortality rate (0.038 and 0.062 per week) and catchability (which can be defined as the proportion of the fished population that is removed by one unit of effort, in this case, estimated to be 2.5 ± 0.4 E-04 per boat-day). This approach provided a method for industry and scientists to develop together a realistic model of the dynamics of the fishery. Several aspects need to be developed further to make this model acceptable to industry. Firstly, there is considerable evidence to suggest that temperature influences prawn catchability. This ecological effect should be incorporated before developing meaningful harvest strategies. Secondly, total effort has to be allocated between each species. Such allocation of effort could be included in the model by estimating several catchability coefficients. Nevertheless, the work presented in this report is a stepping stone towards estimating essential fishery parameters and developing representative mathematical models required to evaluate harvest strategies. Developing a method that allowed an effective discussion between industry, management and scientists took longer than anticipated. As a result, harvest strategy evaluations were preliminary and only included the most valuable species in the fishery, Brown Tiger Prawns. Additional analyses and data collection, including information on catch composition from field sampling, migration rates and recruitment, would improve the modelling. Harvest strategy evaluations As the harvest strategy evaluations are preliminary, the following results should not be adopted for management purposes until more thorough evaluations are performed. The effects, of closing the fishery for one calendar month, on the annual catch and value of Brown Tiger Prawns were investigated. Each of the 12 months (i.e., January to December) was evaluated. The results were compared against historical records to determine the magnitude of gain or loss associated with the closure. Uncertainty regarding the trawl selectivity was addressed using two selectivity curves, one with a weight at 50% selection (S50%) of 7 g, based on research data, and a second with S50% of 14 g, put forward by industry. In both cases, it was concluded that any monthly closure after February would not be beneficial to the industry. The magnitude of the benefit of closing the fishery in either January or February was sensitive to which mesh selectivity curve that was assumed, with greater benefit achieved when the smaller selectivity curve (i.e., S50% = 7 g) was assumed. Using the smaller selectivity (S50% = 7 g), the expected increase in catch value was 10–20% which equates to $200,000 to $400,000 annually, while the larger selectivity curve (S50% = 14 g) suggested catch value would be improved by 5–10%, or $100,000 to $200,000. The harvest strategy evaluations showed that greater benefits, in the order of 30–60% increases in the tiger annual catch value, could have been obtained by closing the fishery early in the year when annual effort levels were high (i.e., > 10,000 boat-days). In recent years, as effort levels have declined (i.e., ~4000 boat-days annually), expected benefits from such closures are more modest. In essence, temporal closures offer greater benefit when fishing mortality rates are high. A spatial analysis of Brown Tiger Prawn catch and effort was also undertaken to obtain a better understanding of the prawn population dynamics. This indicated that, to improve profitability of the fishery, fishers could consider closing the fishery in the period from June to October, which is already a period of low profitability. This would protect the Brown Tiger Prawn spawning stock, increase catch rates of all species in the lucrative pre-Christmas period (November–December), and provide fishers with time to do vessel maintenance, arrange markets for the next season’s harvest, and, if they wish, work at other jobs. The analysis found that the instantaneous rate of total mortality (Z) for the March–June period did not vary significantly over the last two decades. As the Brown Tiger Prawn population in Moreton Bay has clearly increased over this time period, an interesting conclusion is that the instantaneous rate of natural mortality (M) must have increased, suggesting that tiger prawn natural mortality may be density-dependent at this time of year. Mortality rates of tiger prawns for June–October were found to have decreased over the last two decades, which has probably had a positive effect on spawning stocks in the October–November spawning period. Abiotic effects on the prawns The influence of air temperature, rainfall, freshwater flow, the southern oscillation index (SOI) and lunar phase on the catch rates of the four main prawn species were investigated. The analyses were based on over 200,000 daily logbook catch records over 23 years (i.e., 1988–2010). Freshwater flow was more influential than rainfall and SOI, and of the various sources of flow, the Brisbane River has the greatest volume and influence on Moreton Bay prawn catches. A number of time-lags were also considered. Flow in the preceding month prior to catch (i.e., 30 days prior, Logflow1_30) and two months prior (31–60 days prior, Logflow31_60) had strong positive effects on Banana Prawn catch rates. Average air temperature in the preceding 4-6 months (Temp121_180) also had a large positive effect on Banana Prawn catch rates. Flow in the month immediately preceding catch (Logflow1_30) had a strong positive influence on Greasyback Prawn catch rates. Air temperature in the preceding two months prior to catch (Temp1_60) had a large positive effect on Brown Tiger Prawn catch rates. No obvious or marked effects were detected for Eastern King Prawns, although interestingly, catch rates declined with increasing air temperature 4–6 months prior to catch. As most Eastern King Prawn catches in Moreton Bay occur in October to December, the results suggest catch rates decline with increasing winter temperatures. In most cases, the prawn catch rates declined with the waxing lunar phase (high luminance/full moon), and increased with the waning moon (low luminance/new moon). The SOI explains little additional variation in prawn catch rates (~ <2%), although its influence was higher for Banana Prawns. Extrapolating findings of the analyses to long-term climate change effects should be interpreted with caution. That said, the results are consistent with likely increases in abundance in the region for the two tropical species, Banana Prawns and Brown Tiger Prawns, as coastal temperatures rise. Conversely, declines in abundance could be expected for the two temperate species, Greasyback and Eastern King Prawns. Corporate management structures An examination of alternative governance systems was requested by the industry at one of the early meetings, particularly systems that may give them greater autonomy in decision making as well as help improve the marketing of their product. Consequently, a review of alternative management systems was undertaken, with a particular focus on the potential for self-management of small fisheries (small in terms of number of participants) and corporate management. The review looks at systems that have been implemented or proposed for other small fisheries internationally, with a particular focus on self-management as well as the potential benefits and challenges for corporate management. This review also highlighted particular opportunities for the Moreton Bay prawn fishery. Corporate management differs from other co-management and even self-management arrangements in that ‘ownership’ of the fishery is devolved to a company in which fishers and government are shareholders. The company manages the fishery as well as coordinates marketing to ensure that the best prices are received and that the catch taken meets the demands of the market. Coordinated harvesting will also result in increased profits, which are returned to fishers in the form of dividends. Corporate management offers many of the potential benefits of an individual quota system without formally implementing such a system. A corporate management model offers an advantage over a self-management model in that it can coordinate both marketing and management to take advantage of this unique geographical advantage. For such a system to be successful, the fishery needs to be relatively small and self- contained. Small in this sense is in terms of number of operators. The Moreton Bay prawn fishery satisfies these key conditions for a successful self-management and potentially corporate management system. The fishery is small both in terms of number of participants and geography. Unlike other fisheries that have progressed down the self-management route, the key market for the product from the Moreton Bay fishery is right at its doorstep. Corporate management also presents a number of challenges. First, it will require changes in the way fishers operate. In particular, the decision on when to fish and what to catch will be taken away from the individual and decided by the collective. Problems will develop if individuals do not join the corporation but continue to fish and market their own product separately. While this may seem an attractive option to fishers who believe they can do better independently, this is likely to be just a short- term advantage with an overall long-run cost to themselves as well as the rest of the industry. There are also a number of other areas that need further consideration, particularly in relation to the allocation of shares, including who should be allocated shares (e.g. just boat owners or also some employed skippers). Similarly, how harvesting activity is to be allocated by the corporation to the fishers. These are largely issues that cannot be answered without substantial consultation with those likely to be affected, and these groups cannot give these issues serious consideration until the point at which they are likely to become a reality. Given the current structure and complexity of the fishery, it is unlikely that such a management structure will be feasible in the short term. However, the fishery is a prime candidate for such a model, and development of such a management structure in the future should be considered as an option for the longer term.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An ecological risk assessment of the East Coast Otter Trawl Fishery in the Great Barrier Reef Region was undertaken in 2010 and 2011. It assessed the risks posed by this fishery to achieving fishery-related and broader ecological objectives of both the Queensland and Australian governments, including risks to the values and integrity of the Great Barrier Reef World Heritage Area. The risks assessed included direct and indirect effects on the species caught in the fishery as well as on the structure and functioning of the ecosystem. This ecosystem-based approach included an assessment of the impacts on harvested species, by-catch, species of conservation concern, marine habitats, species assemblages and ecosystem processes. The assessment took into account current management arrangements and fishing practices at the time of the assessment. The main findings of the assessment were: Current risk levels from trawling activities are generally low. Some risks from trawling remain. Risks from trawling have reduced in the Great Barrier Reef Region. Trawl fishing effort is a key driver of ecological risk. Zoning has been important in reducing risks. Reducing identified unacceptable risks requires a range of management responses. The commercial fishing industry is supportive and being proactive. Further reductions in trawl by-catch, high compliance with rules and accurate information from ongoing risk monitoring are important. Trawl fishing is just one of the sources of risk to the Great Barrier Reef.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reduced economic circumstances have moved management goals towards higher profit, rather than maximum sustainable yields in several Australian fisheries. The eastern king prawn is one such fishery, for which we have developed new methodology for stock dynamics, calculation of model-based and data-based reference points and management strategy evaluation. The fishery is notable for the northward movement of prawns in eastern Australian waters, from the State jurisdiction of New South Wales to that of Queensland, as they grow to spawning size, so that vessels fishing in the northern deeper waters harvest more large prawns. Bio-economic fishing data were standardized for calibrating a length-structured spatial operating model. Model simulations identified that reduced boat numbers and fishing effort could improve profitability while retaining viable fishing in each jurisdiction. Simulations also identified catch-rate levels that were effective for monitoring in simple within-year effort-control rules. However, favourable performance of catch-rate indicators was achieved only when a meaningful upper limit was placed on total allowed fishing effort. The methods and findings will allow improved measures for monitoring fisheries and inform decision makers on the uncertainty and assumptions affecting economic indicators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Executive Summary: A number of studies have shown that mobile, bottom-contact fishing gear (such as otter trawls) can alter seafloor habitats and associated biota. Considerably less is known about the recovery of these resources following such disturbances, though this information is critical for successful management. In part, this paucity of information can be attributed to the lack of access to adequate control sites – areas of the seafloor that are closed to fishing activity. Recent closures along the coast of central California provide an excellent opportunity to track the recovery of historically trawled areas and to compare recovery rates to adjacent areas that continue to be trawled. In June 2006 we initiated a multi-year study of the recovery of seafloor microhabitats and associated benthic fauna inside and outside two new Essential Fish Habitat (EFH) closures within the Cordell Bank and Gulf of the Farallones National Marine Sanctuaries. Study sites inside the EFH closure at Cordell Bank were located in historically active areas of fishing effort, which had not been trawled since 2003. Sites outside the EFH closure in the Gulf of Farallones were located in an area that continues to be actively trawled. All sites were located in unconsolidated sands at equivalent water depths. Video and still photographic data collected via a remotely operated vehicle (ROV) were used to quantify the abundance, richness, and diversity of microhabitats and epifaunal macro-invertebrates at recovering and actively trawled sites, while bottom grabs and conductivity/temperature/depth (CTD) casts were used to quantify infaunal diversity and to characterize local environmental conditions. Analysis of still photos found differences in common seafloor microhabitats between the recovering and actively trawled areas, while analysis of videographic data indicated that biogenic mound and biogenic depression microhabitats were significantly less abundant at trawled sites. Each of these features provides structure with which demersal fishes, across a wide range of size classes, have been observed to associate. Epifaunal macro-invertebrates were sparsely distributed and occurred in low numbers in both treatments. However, their total abundance was significantly different between treatments, which was attributable to lower densities at trawled sites. In addition, the dominant taxa were different between the two sites. Patchily-distributed buried brittle stars dominated the recovering site, and sea whips (Halipteris cf. willemoesi) were most numerous at the trawled site though they occurred in only five of ten transects. Numerical classification (cluster analysis) of the infaunal samples also revealed a clear difference between benthic assemblages in the recovering vs. trawled areas due to differences in the relative abundances of component species. There were no major differences in infaunal species richness, H′ diversity, or J′ evenness between recovering vs. trawled site groups. However, total infaunal abundance showed a significant difference attributable to much lower densities at trawled sites. This pattern was driven largely by the small oweniid polychaete Myriochele gracilis, which was the most abundant species in the overall study region though significantly less abundant at trawled sites. Other taxa that were significantly less abundant at trawled sites included the polychaete M. olgae and the polychaete family Terebellidae. In contrast, the thyasirid bivalve Axinopsida serricata and the polychaetes Spiophanes spp. (mostly S. duplex), Prionospio spp., and Scoloplos armiger all had significantly to near significantly higher abundances at trawled sites. As a result of such contrasting species patterns, there also was a significant difference in the overall dominance structure of infaunal assemblages between the two treatments. It is suggested that the observed biological patterns were the result of trawling impacts and varying levels of recovery due to the difference in trawling status between the two areas. The EFH closure was established in June 2006, within a month of when sampling was conducted for the present study, however, the stations within this closure area are at sites that actually have experienced little trawling since 2003, based on National Marine Fishery Service trawl records. Thus, the three-year period would be sufficient time for some post-trawling changes to have occurred. Other results from this study (e.g., similarly moderate numbers of infaunal species in both areas that are lower than values recorded elsewhere in comparable habitats along the California continental shelf) also indicate that recovery within the closure area is not yet complete. Additional sampling is needed to evaluate subsequent recovery trends and persistence of effects. Furthermore, to date, the study has been limited to unconsolidated substrates. Ultimately, the goal of this project is to characterize the recovery trajectories of a wide spectrum of seafloor habitats and communities and to link that recovery to the dynamics of exploited marine fishes. (PDF has 48 pages.)