857 resultados para Finite-precision computation
Resumo:
This work reports an alternative method for single non-relativistic charged particle trajectory computation in 2D electrostatic or magnetostatic fields. This task is approached by analytical computation of particle trajectory, by parts, considering the constant fields within each finite element. This method has some advantages over numerical integration ones: numerical miscomputation of trajectories, and stability problems can be avoided. Among the examples presented in this paper, an interesting alternative approach for positive ion extraction from cyclotrons is shown, using strip-foils. Other particle optics devices can benefit of a method such the one proposed in this paper, as beam bending devices, spectrometers, among others. This method can be extended for particle trajectory computation in 3D domains.
Resumo:
The work presented in this thesis is concerned with the dynamical behavior of a CBandola's acoustical box at low resonances -- Two models consisting of two and three coupled oscillators are proposed in order to analyse the response at the first two and three resonances, respectively -- These models describe the first resonances in a bandola as a combination of the lowest modes of vibration of enclosed air, top and back plates -- Physically, the coupling between these elements is caused by the fluid-structure interaction that gives rise to coupled modes of vibration for the assembled resonance box -- In this sense, the coupling in the models is expressed in terms of the ratio of effective areas and masses of the elements which is an useful parameter to control the coupling -- Numerical models are developed for the analysis of modal coupling which is performed using the Finite Element Method -- First, it is analysed the modal behavior of separate elements: enclosed air, top plate and back plate -- This step is important to identify participating modes in the coupling -- Then, a numerical model of the resonance box is used to compute the coupled modes -- The computation of normal modes of vibration was executed in the frequency range of 0-800Hz -- Although the introduced models of coupled oscillators only predict maximum the first three resonances, they also allow to study qualitatively the coupling between the rest of the computed modes in the range -- Considering that dynamic response of a structure can be described in terms of the modal parameters, this work represents, in a good approach, the basic behavior of a CBandola, although experimental measurements are suggested as further work to verify the obtained results and get more information about some characteristics of the coupled modes, for instance, the phase of vibration of the air mode and the radiation e ciency
Resumo:
The central product of the DRAMA (Dynamic Re-Allocation of Meshes for parallel Finite Element Applications) project is a library comprising a variety of tools for dynamic re-partitioning of unstructured Finite Element (FE) applications. The input to the DRAMA library is the computational mesh, and corresponding costs, partitioned into sub-domains. The core library functions then perform a parallel computation of a mesh re-allocation that will re-balance the costs based on the DRAMA cost model. We discuss the basic features of this cost model, which allows a general approach to load identification, modelling and imbalance minimisation. Results from crash simulations are presented which show the necessity for multi-phase/multi-constraint partitioning components.
Resumo:
We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.
Resumo:
Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.
Resumo:
This study proposed to evaluate the mandibular biomechanics in the posterior dentition based on experimental and computational analyses. The analyses were performed on a model of human mandible, which was modeled by epoxy resin for photoelastic analysis and by computer-aided design for finite element analysis. To standardize the evaluation, specific areas were determined at the lateral surface of mandibular body. The photoelastic analysis was configured through a vertical load on the first upper molar and fixed support at the ramus of mandible. The same configuration was used in the computer simulation. Force magnitudes of 50, 100, 150, and 200 N were applied to evaluate the bone stress. The stress results presented similar distribution in both analyses, with the more intense stress being at retromolar area and oblique line and alveolar process at molar level. This study presented the similarity of results in the experimental and computational analyses and, thus, showed the high importance of morphology biomechanical characterization at posterior dentition.
Resumo:
Maxillofacial trauma resulting from falls in elderly patients is a major social and health care concern. Most of these traumatic events involve mandibular fractures. The aim of this study was to analyze stress distributions from traumatic loads applied on the symphyseal, parasymphyseal, and mandibular body regions in the elderly edentulous mandible using finite-element analysis (FEA). Computerized tomographic analysis of an edentulous macerated human mandible of a patient approximately 65 years old was performed. The bone structure was converted into a 3-dimensional stereolithographic model, which was used to construct the computer-aided design (CAD) geometry for FEA. The mechanical properties of cortical and cancellous bone were characterized as isotropic and elastic structures, respectively, in the CAD model. The condyles were constrained to prevent free movement in the x-, y-, and z-axes during simulation. This enabled the simulation to include the presence of masticatory muscles during trauma. Three different simulations were performed. Loads of 700 N were applied perpendicular to the surface of the cortical bone in the symphyseal, parasymphyseal, and mandibular body regions. The simulation results were evaluated according to equivalent von Mises stress distributions. Traumatic load at the symphyseal region generated low stress levels in the mental region and high stress levels in the mandibular neck. Traumatic load at the parasymphyseal region concentrated the resulting stress close to the mental foramen. Traumatic load in the mandibular body generated extensive stress in the mandibular body, angle, and ramus. FEA enabled precise mapping of the stress distribution in a human elderly edentulous mandible (neck and mandibular angle) in response to 3 different traumatic load conditions. This knowledge can help guide emergency responders as they evaluate patients after a traumatic event.
Resumo:
This work approaches the forced air cooling of strawberry by numerical simulation. The mathematical model that was used describes the process of heat transfer, based on the Fourier's law, in spherical coordinates and simplified to describe the one-dimensional process. For the resolution of the equation expressed for the mathematical model, an algorithm was developed based on the explicit scheme of the numerical method of the finite differences and implemented in the scientific computation program MATLAB 6.1. The validation of the mathematical model was made by the comparison between theoretical and experimental data, where strawberries had been cooled with forced air. The results showed to be possible the determination of the convective heat transfer coefficient by fitting the numerical and experimental data. The methodology of the numerical simulations was showed like a promising tool in the support of the decision to use or to develop equipment in the area of cooling process with forced air of spherical fruits.
Resumo:
PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.
Resumo:
The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic). A standard masticatory force (100 N) was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N). The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa). The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Resumo:
An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.
Resumo:
Several numerical methods for boundary value problems use integral and differential operational matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents a sequence of matrix operations allowing a direct computation of operational matrices for polynomial bases, orthogonal or not, starting with any previously known reference matrix. Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results presented here can be applied not only for integration and differentiation, but also for any linear operation.
Resumo:
Some factors complicate comparisons between linkage maps from different studies. This problem can be resolved if measures of precision, such as confidence intervals and frequency distributions, are associated with markers. We examined the precision of distances and ordering of microsatellite markers in the consensus linkage maps of chromosomes 1, 3 and 4 from two F 2 reciprocal Brazilian chicken populations, using bootstrap sampling. Single and consensus maps were constructed. The consensus map was compared with the International Consensus Linkage Map and with the whole genome sequence. Some loci showed segregation distortion and missing data, but this did not affect the analyses negatively. Several inversions and position shifts were detected, based on 95% confidence intervals and frequency distributions of loci. Some discrepancies in distances between loci and in ordering were due to chance, whereas others could be attributed to other effects, including reciprocal crosses, sampling error of the founder animals from the two populations, F(2) population structure, number of and distance between microsatellite markers, number of informative meioses, loci segregation patterns, and sex. In the Brazilian consensus GGA1, locus LEI1038 was in a position closer to the true genome sequence than in the International Consensus Map, whereas for GGA3 and GGA4, no such differences were found. Extending these analyses to the remaining chromosomes should facilitate comparisons and the integration of several available genetic maps, allowing meta-analyses for map construction and quantitative trait loci (QTL) mapping. The precision of the estimates of QTL positions and their effects would be increased with such information.
Three-dimensional finite element thermal analysis of dental tissues irradiated with Er,Cr:YSGG laser
Resumo:
In the present study, a finite element model of a half-sectioned molar tooth was developed in order to understand the thermal behavior of dental hard tissues (both enamel and dentin) under laser irradiation. The model was validated by comparing it with an in vitro experiment where a sound molar tooth was irradiated by an Er,Cr:YSGG pulsed laser. The numerical tooth model was conceived to simulate the in vitro experiment, reproducing the dimensions and physical conditions of the typical molar sound tooth, considering laser energy absorption and calculating the heat transfer through the dental tissues in three dimensions. The numerical assay considered the same three laser energy densities at the same wavelength (2.79 mu m) used in the experiment. A thermographic camera was used to perform the in vitro experiment, in which an Er, Cr: YSGG laser (2.79 mu m) was used to irradiate tooth samples and the infrared images obtained were stored and analyzed. The temperature increments in both the finite element model and the in vitro experiment were compared. The distribution of temperature inside the tooth versus time plotted for two critical points showed a relatively good agreement between the results of the experiment and model. The three dimensional model allows one to understand how the heat propagates through the dentin and enamel and to relate the amount of energy applied, width of the laser pulses, and temperature inside the tooth. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2953526]
Resumo:
It is possible that a system composed of up, down, and strange quarks exists as the true ground state of nuclear matter at high densities and low temperatures. This exotic plasma, called strange quark matter (SQM), seems to be even more favorable energetically if quarks are in a superconducting state, the so-called color-flavor locked state. Here we present calculations made on the basis of the MIT bag model, considering the influence of finite temperature on the allowed parameters characterizing the system for stability of bulk SQM (the so-called stability windows) and also for strangelets, small lumps of SQM, both in the color-flavor locking scenario. We compare these results with the unpaired SQM and also briefly discuss some astrophysical implications of them. Also, the issue of the strangelet's electric charge is discussed. The effects of dynamical screening, though important for nonpaired SQM strangelets, are not relevant when considering pairing among all three flavors and colors of quarks.