940 resultados para Finite difference modelling
Resumo:
Quality factor enhancement due to mode coupling is observed in a three-dimensional microdisk resonator. The microdisk, which is vertically sandwiched between air and a substrate, with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, is considered in a finite-difference time-domain (FDTD) numerical simulation. The mode quality factor of the fundamental mode HE71 decreases with an increase of the refractive index of the substrate, n(sub), from 2.0 to 3.17. However, the mode quality factor of the first-order mode HE72 reaches a peak value at n(sub) = 2.7 because of the mode coupling between the fundamental and the first-order modes. The variation of mode field distributions due to the mode coupling is also observed. This mechanism may be used to realize high-quality-factor modes in microdisks with high-refractive-index substrates. (c) 2006 Optical Society of America.
Resumo:
A new finite-difference scheme is presented for the second derivative of a semivectorial field in a step-index optical waveguide with tilt interfaces. The present scheme provides an accurate description of the tilt interface of the nonrectangular structure. Comparison with previously presented formulas shows the effectiveness of the present scheme.
Resumo:
The microregion approximation explicit finite difference method is used to simulate cyclic voltammetry of an electrochemical reversible system in a three-dimensional thin layer cell with minigrid platinum electrode. The simulated CV curve and potential scan-absorbance curve were in very good accordance with the experimental results, which differed from those at a plate electrode. The influences of sweep rate, thickness of the thin layer, and mesh size on the peak current and peak separation were also studied by numerical analysis, which give some instruction for choosing experimental conditions or designing a thin layer cell. The critical ratio (1.33) of the diffusion path inside the mesh hole and across the thin layer was also obtained. If the ratio is greater than 1.33 by means of reducing the thickness of a thin layer, the electrochemical property will be far away from the thin layer property.
Resumo:
This thesis is concerned with uniformly convergent finite element and finite difference methods for numerically solving singularly perturbed two-point boundary value problems. We examine the following four problems: (i) high order problem of reaction-diffusion type; (ii) high order problem of convection-diffusion type; (iii) second order interior turning point problem; (iv) semilinear reaction-diffusion problem. Firstly, we consider high order problems of reaction-diffusion type and convection-diffusion type. Under suitable hypotheses, the coercivity of the associated bilinear forms is proved and representation results for the solutions of such problems are given. It is shown that, on an equidistant mesh, polynomial schemes cannot achieve a high order of convergence which is uniform in the perturbation parameter. Piecewise polynomial Galerkin finite element methods are then constructed on a Shishkin mesh. High order convergence results, which are uniform in the perturbation parameter, are obtained in various norms. Secondly, we investigate linear second order problems with interior turning points. Piecewise linear Galerkin finite element methods are generated on various piecewise equidistant meshes designed for such problems. These methods are shown to be convergent, uniformly in the singular perturbation parameter, in a weighted energy norm and the usual L2 norm. Finally, we deal with a semilinear reaction-diffusion problem. Asymptotic properties of solutions to this problem are discussed and analysed. Two simple finite difference schemes on Shishkin meshes are applied to the problem. They are proved to be uniformly convergent of second order and fourth order respectively. Existence and uniqueness of a solution to both schemes are investigated. Numerical results for the above methods are presented.
Resumo:
Computational results for the microwave heating of a porous material are presented in this paper. Combined finite difference time domain and finite volume methods were used to solve equations that describe the electromagnetic field and heat and mass transfer in porous media. The coupling between the two schemes is through a change in dielectric properties which were assumed to be dependent both on temperature and moisture content. The model was able to reflect the evolution of temperature and moisture fields as the moisture in the porous medium evaporates. Moisture movement results from internal pressure gradients produced by the internal heating and phase change.
Resumo:
In this paper a continuum model for the prediction of segregation in granular material is presented. The numerical framework, a 3-D, unstructured grid, finite-volume code is described, and the micro-physical parametrizations, which are used to describe the processes and interactions at the microscopic level that lead to segregation, are analysed. Numerical simulations and comparisons with experimental data are then presented and conclusions are drawn on the capability of the model to accurately simulate the behaviour of granular matter during flow.
Resumo:
Four non-destructive tests for determining the length of fatigue cracks within the solder joints of a 2512 surface mount resistor are investigated. The sensitivity of the tests is obtained using finite element analysis with some experimental validation. Three of the tests are mechanically based and one is thermally based. The mechanical tests all operate by applying different loads to the PCB and monitoring the strain response at the top of the resistor. The thermal test operates by applying a heat source underneath the PCB, and monitoring the temperature response at the top of the resistor. From the modelling work done, two of these tests have shown to be sensitive to cracks. Some experimental results are presented but further work is required to fully validate the simulation results.