942 resultados para Finite Linear Sub-Variety


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoffs hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a stab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. on these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degrees of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to present organizational models for optimizing the reduction of crop residue generated by the sugarcane culture. The first model consisted of the selection of varieties of sugarcane to be planted meeting the mill requirements and, at the same time, to minimize the quantity of residue produced. The second model discussed the use of residue to produce energy. This is related to the selection of variety and quantity to be planted, in order to meet the requirements of the mill, to reduce the quantity of residue, and to maximize as much as possible the energy production. The use of linear programming was proposed. The two models presented similar results in this study, and both may be used to define the varieties and areas to be cultivated. (C) 2001 Published by Elsevier B.V. Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We continue our discussion of the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical and tricritical points. In a previous paper, the spectrum and full S-matrix of the models on an infinite line were elucidated; here, we consider finite-size behaviour. TBA equations are proposed for all cases related to phi(21) and phi(12) perturbations of unitary minimal models. These are subjected to a variety of checks in the ultraviolet and infrared limits, and compared with results from a recently-proposed non-linear integral equation. A non-linear integral equation is also used to study the flows from tricritical to critical models, over the full range of q. Our results should also be of relevance to the study of the off-critical dilute A models in regimes 1 and 2. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O presente estudo realiza estimativas da condutividade térmica dos principais minerais formadores de rochas, bem como estimativas da condutividade média da fase sólida de cinco litologias básicas (arenitos, calcários, dolomitos, anidritas e litologias argilosas). Alguns modelos térmicos foram comparados entre si, possibilitando a verificação daquele mais apropriado para representar o agregado de minerais e fluidos que compõem as rochas. Os resultados obtidos podem ser aplicados a modelamentos térmicos os mais variados. A metodologia empregada baseia-se em um algoritmo de regressão não-linear denominado de Busca Aleatória Controlada. O comportamento do algoritmo é avaliado para dados sintéticos antes de ser usado em dados reais. O modelo usado na regressão para obter a condutividade térmica dos minerais é o modelo geométrico médio. O método de regressão, usado em cada subconjunto litológico, forneceu os seguintes valores para a condutividade térmica média da fase sólida: arenitos 5,9 ± 1,33 W/mK, calcários 3.1 ± 0.12 W/mK, dolomitos 4.7 ± 0.56 W/mK, anidritas 6.3 ± 0.27 W/mK e para litologias argilosas 3.4 ± 0.48 W/mK. Na sequência, são fornecidas as bases para o estudo da difusão do calor em coordenadas cilíndricas, considerando o efeito de invasão do filtrado da lama na formação, através de uma adaptação da simulação de injeção de poços proveniente das teorias relativas à engenharia de reservatório. Com isto, estimam-se os erros relativos sobre a resistividade aparente assumindo como referência a temperatura original da formação. Nesta etapa do trabalho, faz-se uso do método de diferenças finitas para avaliar a distribuição de temperatura poço-formação. A simulação da invasão é realizada, em coordenadas cilíndricas, através da adaptação da equação de Buckley-Leverett em coordenadas cartesianas. Efeitos como o aparecimento do reboco de lama na parede do poço, gravidade e pressão capilar não são levados em consideração. A partir das distribuições de saturação e temperatura, obtém-se a distribuição radial de resistividade, a qual é convolvida com a resposta radial da ferramenta de indução (transmissor-receptor) resultando na resistividade aparente da formação. Admitindo como referência a temperatura original da formação, são obtidos os erros relativos da resistividade aparente. Através da variação de alguns parâmetros, verifica-se que a porosidade e a saturação original da formação podem ser responsáveis por enormes erros na obtenção da resistividade, principalmente se tais "leituras" forem realizadas logo após a perfuração (MWD). A diferença de temperatura entre poço e formação é a principal causadora de tais erros, indicando que em situações onde esta diferença de temperatura seja grande, perfilagens com ferramentas de indução devam ser realizadas de um a dois dias após a perfuração do poço.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For a positive integer $t$, let \begin{equation*} \begin{array}{ccccccccc} (\mathcal{A}_{0},\mathcal{M}_{0}) & \subseteq & (\mathcal{A}_{1},\mathcal{M}_{1}) & \subseteq & & \subseteq & (\mathcal{A}_{t-1},\mathcal{M}_{t-1}) & \subseteq & (\mathcal{A},\mathcal{M}) \\ \cap & & \cap & & & & \cap & & \cap \\ (\mathcal{R}_{0},\mathcal{M}_{0}^{2}) & & (\mathcal{R}_{1},\mathcal{M}_{1}^{2}) & & & & (\mathcal{R}_{t-1},\mathcal{M}_{t-1}^{2}) & & (\mathcal{R},\mathcal{M}^{2}) \end{array} \end{equation*} be a chain of unitary local commutative rings $(\mathcal{A}_{i},\mathcal{M}_{i})$ with their corresponding Galois ring extensions $(\mathcal{R}_{i},\mathcal{M}_{i}^{2})$, for $i=0,1,\cdots,t$. In this paper, we have given a construction technique of the cyclic, BCH, alternant, Goppa and Srivastava codes over these rings. Though, initially in \cite{AP} it is for local ring $(\mathcal{A},\mathcal{M})$, in this paper, this new approach have given a choice in selection of most suitable code in error corrections and code rate perspectives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questa tesi si pone come obiettivo l'analisi delle componenti di sollecitazione statica di un serbatoio, in acciaio API 5L X52, sottoposto a carichi di flessione e pressione interna attraverso il programma agli elementi finiti PLCd4, sviluppato presso l'International Center for Numerical Methods in Engineering (CIMNE - Barcelona). Questo tipo di analisi rientra nel progetto europeo ULCF, il cui traguardo è lo studio della fatica a bassissimo numero di cicli per strutture in acciaio. Prima di osservare la struttura completa del serbatoio è stato studiato il comportamento del materiale per implementare all'interno del programma una nuova tipologia di curva che rappresentasse al meglio l'andamento delle tensioni interne. Attraverso il lavoro di preparazione alla tesi è stato inserito all'interno del programma un algoritmo per la distribuzione delle pressioni superficiali sui corpi 3D, successivamente utilizzato per l'analisi della pressione interna nel serbatoio. Sono state effettuate analisi FEM del serbatoio in diverse configurazioni di carico ove si è cercato di modellare al meglio la struttura portante relativa al caso reale di "full scale test". Dal punto di vista analitico i risultati ottenuti sono soddisfacenti in quanto rispecchiano un corretto comportamento del serbatoio in condizioni di pressioni molto elevate e confermano la bontà del programma nell'analisi computazionale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion-generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

En la presente tesis desarrollamos una estrategia para la simulación numérica del comportamiento mecánico de la aorta humana usando modelos de elementos finitos no lineales. Prestamos especial atención a tres aspectos claves relacionados con la biomecánica de los tejidos blandos. Primero, el análisis del comportamiento anisótropo característico de los tejidos blandos debido a las familias de fibras de colágeno. Segundo, el análisis del ablandamiento presentado por los vasos sanguíneos cuando estos soportan cargas fuera del rango de funcionamiento fisiológico. Y finalmente, la inclusión de las tensiones residuales en las simulaciones en concordancia con el experimento de apertura de ángulo. El análisis del daño se aborda mediante dos aproximaciones diferentes. En la primera aproximación se presenta una formulación de daño local con regularización. Esta formulación tiene dos ingredientes principales. Por una parte, usa los principios de la teoría de la fisura difusa para garantizar la objetividad de los resultados con diferentes mallas. Por otra parte, usa el modelo bidimensional de Hodge-Petruska para describir el comportamiento mesoscópico de los fibriles. Partiendo de este modelo mesoscópico, las propiedades macroscópicas de las fibras de colágeno son obtenidas a través de un proceso de homogenización. En la segunda aproximación se presenta un modelo de daño no-local enriquecido con el gradiente de la variable de daño. El modelo se construye a partir del enriquecimiento de la función de energía con un término que contiene el gradiente material de la variable de daño no-local. La inclusión de este término asegura una regularización implícita de la implementación por elementos finitos, dando lugar a resultados de las simulaciones que no dependen de la malla. La aplicabilidad de este último modelo a problemas de biomecánica se estudia por medio de una simulación de un procedimiento quirúrgico típico conocido como angioplastia de balón. In the present thesis we develop a framework for the numerical simulation of the mechanical behaviour of the human aorta using non-linear finite element models. Special attention is paid to three key aspects related to the biomechanics of soft tissues. First, the modelling of the characteristic anisotropic behaviour of the softue due to the collagen fibre families. Secondly, the modelling of damage-related softening that blood vessels exhibit when subjected to loads beyond their physiological range. And finally, the inclusion of the residual stresses in the simulations in accordance with the opening-angle experiment The modelling of damage is addressed with two major and different approaches. In the first approach a continuum local damage formulation with regularisation is presented. This formulation has two principal ingredients. On the one hand, it makes use of the principles of the smeared crack theory to avoid the mesh size dependence of the structural response in softening. On the other hand, it uses a Hodge-Petruska bidimensional model to describe the fibrils as staggered arrays of tropocollagen molecules, and from this mesoscopic model the macroscopic material properties of the collagen fibres are obtained using an homogenisation process. In the second approach a non-local gradient-enhanced damage formulation is introduced. The model is built around the enhancement of the free energy function by means of a term that contains the referential gradient of the non-local damage variable. The inclusion of this term ensures an implicit regularisation of the finite element implementation, yielding mesh-objective results of the simulations. The applicability of the later model to biomechanically-related problems is studied by means of the simulation of a typical surgical procedure, namely, the balloon angioplasty.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerical modelling methodologies are important by their application to engineering and scientific problems, because there are processes where analytical mathematical expressions cannot be obtained to model them. When the only available information is a set of experimental values for the variables that determine the state of the system, the modelling problem is equivalent to determining the hyper-surface that best fits the data. This paper presents a methodology based on the Galerkin formulation of the finite elements method to obtain representations of relationships that are defined a priori, between a set of variables: y = z(x1, x2,...., xd). These representations are generated from the values of the variables in the experimental data. The approximation, piecewise, is an element of a Sobolev space and has derivatives defined in a general sense into this space. The using of this approach results in the need of inverting a linear system with a structure that allows a fast solver algorithm. The algorithm can be used in a variety of fields, being a multidisciplinary tool. The validity of the methodology is studied considering two real applications: a problem in hydrodynamics and a problem of engineering related to fluids, heat and transport in an energy generation plant. Also a test of the predictive capacity of the methodology is performed using a cross-validation method.