911 resultados para Filtration and Separation
Resumo:
In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic) acids from PFAD-Palm Fatty Acids Distillates was used as a case study.
Resumo:
Objective: Individuals with obsessive-compulsive disorder (OCD) and separation anxiety disorder (SAD) tend to present higher morbidity than do those with OCD alone. However, the relationship between OCD and SAD has yet to be fully explored.Method: This was a cross-sectional study using multiple logistic regression to identify differences between OCD patients with SAD (OCD + SAD, n = 260) and without SAD (OCD, n = 695), in terms of clinical and socio-demographic variables. Data were extracted from those collected between 2005 and 2009 via the Brazilian Research Consortium on Obsessive-Compulsive Spectrum Disorders project.Results: SAD was currently present in only 42 (4.4%) of the patients, although 260 (27.2%) had a life-time diagnosis of the disorder. In comparison with the OCD group patients, patients with SAD + OCD showed higher chance to present sensory phenomena, to undergo psychotherapy, and to have more psychiatric comorbidities, mainly bulimia.Conclusion: In patients with primary OCD, comorbid SAD might be related to greater personal dysfunction and a poorer response to treatment, since sensory phenomena may be a confounding aspect on diagnosis and therapeutics. Patients with OCD + SAD might be more prone to developing specific psychiatric comorbidities, especially bulimia. Our results suggest that SAD symptom assessment should be included in the management and prognostic evaluation of OCD, although the psychobiological role that such symptoms play in OCD merits further investigation. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.
Resumo:
Today , Providing drinking water and process water is one of the major problems in most countries ; the surface water often need to be treated to achieve necessary quality, and in this way, technological and also financial difficulties cause great restrictions in operating the treatment units. Although water supply by simple and cheap systems has been one of the important objectives in most scientific and research centers in the world, still a great percent of population in developing countries, especially in rural areas, don't benefit well quality water. One of the big and available sources for providing acceptable water is sea water. There are two ways to treat sea water first evaporation and second reverse osmosis system. Nowadays R.O system has been used for desalination because of low budget price and easily to operate and maintenance. The sea water should be pretreated before R.O plants, because there is some difficulties in raw sea water that can decrease yield point of membranes in R.O system. The subject of this research may be useful in this way, and we hope to be able to achieve complete success in design and construction of useful pretreatment systems for R.O plant. One of the most important units in the sea water pretreatment plant is filtration, the conventional method for filtration is pressurized sand filters, and the subject of this research is about new filtration which is called continuous back wash sand filtration (CBWSF). The CBWSF designed and tested in this research may be used more economically with less difficulty. It consists two main parts first shell body and second central part comprising of airlift pump, raw water feeding pipe, air supply hose, backwash chamber and sand washer as well as inlet and outlet connections. The CBWSF is a continuously operating filter, i.e. the filter does not have to be taken out of operation for backwashing or cleaning. Inlet water is fed through the sand bed while the sand bed is moving downwards. The water gets filtered while the sand becomes dirty. Simultaneously, the dirty sand is cleaned in the sand washer and the suspended solids are discharged in backwash water. We analyze the behavior of CBWSF in pretreatment of sea water instead of pressurized sand filter. There is one important factor which is not suitable for R.O membranes, it is bio-fouling. This factor is defined by Silt Density Index (SDI).measured by SDI. In this research has been focused on decreasing of SDI and NTU. Based on this goal, the prototype of pretreatment had been designed and manufactured to test. The system design was done mainly by using the design fundamentals of CBWSF. The automatic backwash sand filter can be used in small and also big water supply schemes. In big water treatment plants, the units of filters perform the filtration and backwash stages separately, and in small treatment plants, the unit is usually compacted to achieve less energy consumption. The analysis of the system showed that it may be used feasibly for water treating, especially for limited population. The construction is rapid, simple and economic, and its performance is high enough because no mobile mechanical part is used in it, so it may be proposed as an effective method to improve the water quality and consequently the hygiene level in the remote places of the country.
Resumo:
In this work, ionic liquids are evaluated for the first time as solvents for extraction and entrainers in separation processes involving terpenes and terpenoids. For that purpose, activity coefficients at infinite dilution, γ13 ∞, of terpenes and terpenoids, in the ionic liquids [C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] were determined by gas−liquid chromatography at six temperatures in the range 398.15 to 448.15 K. On the basis of the experimental values, a correlation of γ13 ∞ with an increase of the solubility parameters is proposed. The infinite dilution thermodynamic functions were calculated showing the entropic effect is dominant over the enthalpic. Gas−liquid partition coefficients give indications about the recovery and purification of terpenes and terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-RS was evaluated for the description of the selectivities and capacities, showing to be a useful tool for the screening of ionic liquids in order to find suitable candidates for terpenes and terpenoids extraction, and separation. COSMO-RS predictions show that in order to achieve the maximum separation efficiency, polar anions should be used such as bis(2,4,4-trimethylpentyl)phosphinate or acetate, whereas high capacities require nonpolar cations such as phosphonium.
Resumo:
Aeromonads are inhabitants of aquatic ecosystems and are described as being involved in intestinal disturbances and other infections. A total of 200 drinking water samples from domestic and public reservoirs and drinking fountains located in São Paulo (Brazil), were analyzed for the presence of Aeromonas. Samples were concentrated by membrane filtration and enriched in APW. ADA medium was used for Aeromonas isolation and colonies were confirmed by biochemical characterization. Strains isolated were tested for hemolysin and toxin production. Aeromonas was detected in 12 samples (6.0%). Aeromonas strains (96) were isolated and identified as: A. caviae (41.7%), A. hydrophila (15.7%), A.allosacharophila (10.4%), A. schubertii (1.0%) and Aeromonas spp. (31.2%).The results revealed that 70% of A. caviae, 66.7% of A. hydrophila, 80% of A. allosacharophila and 46.6% of Aeromonas spp. were hemolytic. The assay for checking production of toxins showed that 17.5% of A. caviae, 73.3% of A. hydrophila, 60% of A. allosacharophila, 100% of A. schubertii, and 33.3% of Aeromonas spp. were able to produce toxins. The results demonstrated the pathogenic potential of Aeromonas, indicating that the presence of this emerging pathogen in water systems is a public health concern
Resumo:
An antimicrobial peptide produced by a bacterium isolated from the effluent pond of a bovine abattoir was purified and characterized. The strain was characterized by biochemical profiling and 16S rDNA sequencing as Pseudomonas sp. The antimicrobial peptide was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography. Direct activity on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was observed. A major band on SDS-PAGE suggested that the antimicrobial peptide has a molecular mass of about 30 kDa. The substance was inhibitory to a broad range of indicator strains, including pathogenic and food spoilage bacteria such as Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, among other. The partially purified antimicrobial substance remained active over a wide temperature range and was resistant to all proteases tested. This substance showed different properties than other antimicrobials from Pseudomonas species, suggesting a novel antimicrobial peptide was characterized.
Resumo:
The arteriovenous fistula (AVF) is characterized by enhanced blood flow and is the most widely used vascular access for chronic haemodialysis (Sivanesan et al., 1998). A large proportion of the AVF late failures are related to local haemodynamics (Sivanesan et al., 1999a). As in AVF, blood flow dynamics plays an important role in growth, rupture, and surgical treatment of aneurysm. Several techniques have been used to study the flow patterns in simplified models of vascular anastomose and aneurysm. In the present investigation, Computational Fluid Dynamics (CFD) is used to analyze the flow patterns in AVF and aneurysm through the velocity waveform obtained from experimental surgeries in dogs (Galego et al., 2000), as well as intra-operative blood flow recordings of patients with radiocephalic AVF ( Sivanesan et al., 1999b) and physiological pulses (Aires, 1991), respectively. The flow patterns in AVF for dog and patient surgeries data are qualitatively similar. Perturbation, recirculation and separation zones appeared during cardiac cycle, and these were intensified in the diastole phase for the AVF and aneurysm models. The values of wall shear stress presented in this investigation of AVF and aneurysm models oscillated in the range that can both cause damage to endothelial cells and develop atherosclerosis.
Resumo:
Fuel cell systems offer excellent efficiencies when compared to internal combustion engines, which result in reduced fuel consumption and greenhouse gas emissions. One of the areas requiring research for the success of fuel cell technology is the H2 fuel purification to reduce CO, which is a poison to fuel cells. Molecular sieve silica (MSS) membranes have a potential application in this area. In this work showed activated transport, a characteristic of ultramicroporous (dp
Resumo:
Hydrogen is being seen as an alternative energy carrier to conventional hydrocarbons to reduce greenhouse gas emissions. High efficiency separation technologies to remove hydrogen from the greenhouse gas, carbon dioxide, are therefore in growing demand. Traditional thermodynamic separation systems utilise distillation, absorption and adsorption, but are limited in efficiency at compact scales. Molecular sieve silica (MSS) membranes can perform this separation as they have high permselectivity of hydrogen to carbon dioxide, but their stability under thermal cycling is not well reported. In this work we exposed a standard MSS membrane and a carbonised template MSS (CTMSS) membrane to thermal cycling from 100 to 450°C. The standard MSS and carbonised template CTMSS membranes both showed permselectivity of helium to nitrogen dropping from around 10 to 6 in the first set of cycles, remaining stable until the last test. The permselectivity drop was due to small micropore collapse, which occurred via structure movement during cycling. Simulating single stage membrane separation with a 50:50 molar feed of H2:CO2, H2 exiting the permeate stream would start at 79% and stabilise at 67%. Higher selectivity membranes showed less of a purity drop, indicating the margin at which to design a stable membrane separation unit for CO2 capture.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
Efficient separation of fuel gas (H2) from other gases in reformed gas mixtures is becoming increasingly important in the development of alternative energy systems. A highly efficient and new technology available for these separations is molecular sieve silica (MSS) membranes derived from tetraethyl-orthosilicate (TEOS). A permeation model is developed from an analogous electronic system and compared to transport theory to determine permeation, selectivity and apparent activation of energy based on experimental values. Experimental results for high quality membranes show single gas permselectivity peaking at 57 for H2/CO at 150°C with a H2 permeation of 5.14 x 10^-8 mol.m^-2.s^-1.Pa^-1. Higher permeance was also achieved, but at the expense of selectivity. This is the case for low quality membranes with peak H2 permeation at 1.78 x 10-7 mol.m-2.s-1.Pa-1 at 22°C and H2/CO permselectivity of 4.5. High quality membranes are characterised with positive apparent activation energy while the low quality membranes have negative values. The model had a good fit of r-squared of 0.99-1.00 using the experimental data.
Resumo:
In this work we compare the hydrothermal stability performance of a Templated Molecular Sieve Silica (TMSS) membrane against a standard, non-templated Molecular Sieve Silica (MSS) membrane. The tests were carried under dry and wet (steam) conditions for single gas (He, H2, CO and CO2) at 1-2 atm membrane pressure drop at 200oC. Single gas TMSS membrane H2, permeance and H2/CO permselectivity was found to be 2.05 x 10-8 mols.m-2.s-1.Pa-1 and 15, respectively. The MSS membrane showed similar selectivity, but increased overall flux. He permeance through membranes decayed at a rate of 4-5 x 10-10 mols.m-2.s-1.Pa-1 per day regardless of membrane ambience (dry or wet). Although H2/CO permselectivity of the TMSS membrane slightly improved from 15 to 18 after steam testing, the MSS membrane resulted in significant reduction from 16 to 8.3. In addition, membrane regeneration after more than 50 days resulted in the TMSS membrane reverting to its original permeation levels while no significant improvements were observed for the MSS membra ne. Results showed that the TMSS membrane had enhanced hydrothermal stability and regeneration ability.
Resumo:
A new class of hybrid molecular sieve silica (MSS) membranes is developed and tested against standard and organic templated membranes. The hybrid membrane is synthesized by the standard sol-gel process, integrating a template (methyltriethoxysilane - MTES) and a C6 surfactant (triethylhexylammonium bromide) into the silica film matrix. After hydro treatment under a relative humidity of 96% for 50h, the hybrid membrane shows no changes in its gas separation capabilities or energy of mobility. The structural characteristics and integrity of the hybrid membrane are retained due to a high concentration of organophilic functional groups and alkoxides observed using 29 Si NMR. In contrast, the structural integrity of the membranes prepared with non-templated films deteriorated during the hydro treatment due to a large percentage of silanol groups (Si-OH) which react with water. The hybrid membranes underwent a decrease in the H2/CO2 selectivity of only 1% whereas for the non-templated membrane a 21% decrease was observed. The transport mechanism of the hybrid membranes is activated as permeation increased with temperature. The activation energy for the permeation of H2 is positive while negative for CO2. The H2 permeation obtained was 3x 10 -8 mol.m -2 .s -1 .Pa -1 and permselectivities for H2/CO2 and H2/N2 varied between 1-7 and 31-34, respectively.
Resumo:
Composite adsorbents of carbon and alumina intercalated montmorillonite were prepared and characterized by adsorption of N-2 and O-2 at various temperatures. The effects of pyrolysis, temperature, heating rate, subsequent degassing, and doping of cations and anions were investigated. The adsorption capacities of the composite adsorbents developed at higher temperatures (0 and -79 degrees C) are found to be larger than those of normal alumina pillared clays. The experimental results showed that the framework of these adsorbents is made of alumina particles and clay sheets while the pyrolyzed carbon distributes in the space of interlayers and interpillars. The pores between the carbon particles, clay sheets, and alumina pillars are very narrow with very strong adsorption forces, leading to enhanced adsorption capacities at 0 and -79 degrees C. The composite adsorbents exhibit features similar to those of carbonaceous adsorbents. Their pore structures, adsorption capacities, and selectivities to oxygen can be tailored by a controlled degassing procedure. Meanwhile, ions can be doped into the adsorbents to modify their adsorption properties, as usually observed for oxide adsorbents like zeolite and pillared clays. Such flexibility in pore structure tailoring is a potential advantage of the composite adsorbents developed for their adsorption and separation applications. (C) 1999 Academic Press.