945 resultados para Filters
Resumo:
We propose a novel form of nonlinear stochastic filtering based on an iterative evaluation of a Kalman-like gain matrix computed within a Monte Carlo scheme as suggested by the form of the parent equation of nonlinear filtering (Kushner-Stratonovich equation) and retains the simplicity of implementation of an ensemble Kalman filter (EnKF). The numerical results, presently obtained via EnKF-like simulations with or without a reduced-rank unscented transformation, clearly indicate remarkably superior filter convergence and accuracy vis-a-vis most available filtering schemes and eminent applicability of the methods to higher dimensional dynamic system identification problems of engineering interest. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
Voltage source inverter (VSI)-fed six-phase induction motor (IM) drives have high 6n +/- 1, n = odd-order harmonic currents. This is because these currents, driven by the corresponding harmonic voltages in the inverter output, are limited only by the stator leakage impedance, as these harmonics are absent in the back electromotive force of the motor. To suppress the harmonic currents, either bulky inductive harmonic filters or complex pulsewidth modulation (PWM) techniques have to be used. This paper proposes a harmonic elimination scheme using switched capacitor filters for a VSI-fed split-phase IM drive. Two 3-phase inverters fed from capacitors are used on the open-end side of the motor to suppress 6n +/- 1, n = odd-order harmonics. A PWM scheme that can suppress the harmonics as well as balance the capacitor voltage is also proposed. The capacitor fed inverters are switched so that the fundamental voltage is not affected, and the fundamental power is always drawn from the main inverters. The proposed scheme is verified with a detailed experimental study. The effectiveness of the scheme is demonstrated by comparing the results with those obtained by disabling the capacitor fed inverters.
Resumo:
MEMS resonators have potential application in the area of frequency selective devices (e.g., gyroscopes, mass sensors, etc.). In this paper, design of electro thermally tunable resonators is presented. SOIMUMPs process is used to fabricate resonators with springs (beams) and a central mass. When voltage is applied, due to joule heating, temperature of the conducting beams goes up. This results in increase of electrical resistance due to mobility degradation. Due to increase in the temperature, springs start softening and therefore the fundamental frequency decreases. So for a given structure, one can modify the original fundamental frequency by changing the applied voltage. Coupled thermal effects result in non-uniform heating. It is observed from measurements and simulations that some parts of the beam become very hot and therefore soften more. Consequently, at higher voltages, the structure (equivalent to a single resonator) behaves like coupled resonators and exhibits peak splitting. In this mode, the given resonator can be used as a band rejection filter. This process is reversible and repeatable. For the designed structure, it is experimentally shown that by varying the voltage from 1 to 16V, the resonant frequency could be changed by 28%.
Resumo:
The NO2 center dot center dot center dot I supramolecular synthon is a halogen bonded recognition pattern that is present in the crystal structures of many compounds that contain these functional groups. These synthons have been previously distinguished as P, Q, and R types using topological and geometrical criteria. A five step IR spectroscopic sequence is proposed here to distinguish between these synthon types in solid samples. Sets of known compounds that contain the P, Q, and R synthons are first taken to develop IR spectroscopic identifiers for them. The identifiers are then used to create graded IR filters that sieve the synthons. These filters contain signatures of the individual NO2 center dot center dot center dot I synthons and may be applied to distinguish between P, Q, and R synthon varieties. They are also useful to identify synthons that are of a borderline character, synthons in disordered structures wherein the crystal structure in itself is not sufficient to distinguish synthon types, and in the identification of the NO2 center dot center dot center dot I synthons in compounds with unknown crystal structures. This study establishes clear differences for the three different geometries P, Q, and Rand in the chemical differences in the intermolecular interactions contained in the synthons. Our IR method can be conveniently employed when single crystals are not readily available also in high throughput analysis. It is possible that such identification may also be adopted as an input for crystal structure prediction analysis of compounds with unknown crystal structures.
Resumo:
A nonlinear stochastic filtering scheme based on a Gaussian sum representation of the filtering density and an annealing-type iterative update, which is additive and uses an artificial diffusion parameter, is proposed. The additive nature of the update relieves the problem of weight collapse often encountered with filters employing weighted particle based empirical approximation to the filtering density. The proposed Monte Carlo filter bank conforms in structure to the parent nonlinear filtering (Kushner-Stratonovich) equation and possesses excellent mixing properties enabling adequate exploration of the phase space of the state vector. The performance of the filter bank, presently assessed against a few carefully chosen numerical examples, provide ample evidence of its remarkable performance in terms of filter convergence and estimation accuracy vis-a-vis most other competing filters especially in higher dimensional dynamic system identification problems including cases that may demand estimating relatively minor variations in the parameter values from their reference states. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Local polynomial approximation of data is an approach towards signal denoising. Savitzky-Golay (SG) filters are finite-impulse-response kernels, which convolve with the data to result in polynomial approximation for a chosen set of filter parameters. In the case of noise following Gaussian statistics, minimization of mean-squared error (MSE) between noisy signal and its polynomial approximation is optimum in the maximum-likelihood (ML) sense but the MSE criterion is not optimal for non-Gaussian noise conditions. In this paper, we robustify the SG filter for applications involving noise following a heavy-tailed distribution. The optimal filtering criterion is achieved by l(1) norm minimization of error through iteratively reweighted least-squares (IRLS) technique. It is interesting to note that at any stage of the iteration, we solve a weighted SG filter by minimizing l(2) norm but the process converges to l(1) minimized output. The results show consistent improvement over the standard SG filter performance.
Resumo:
We propose optimal bilateral filtering techniques for Gaussian noise suppression in images. To achieve maximum denoising performance via optimal filter parameter selection, we adopt Stein's unbiased risk estimate (SURE)-an unbiased estimate of the mean-squared error (MSE). Unlike MSE, SURE is independent of the ground truth and can be used in practical scenarios where the ground truth is unavailable. In our recent work, we derived SURE expressions in the context of the bilateral filter and proposed SURE-optimal bilateral filter (SOBF). We selected the optimal parameters of SOBF using the SURE criterion. To further improve the denoising performance of SOBF, we propose variants of SOBF, namely, SURE-optimal multiresolution bilateral filter (SMBF), which involves optimal bilateral filtering in a wavelet framework, and SURE-optimal patch-based bilateral filter (SPBF), where the bilateral filter parameters are optimized on small image patches. Using SURE guarantees automated parameter selection. The multiresolution and localized denoising in SMBF and SPBF, respectively, yield superior denoising performance when compared with the globally optimal SOBF. Experimental validations and comparisons show that the proposed denoisers perform on par with some state-of-the-art denoising techniques. (C) 2015 SPIE and IS&T
Resumo:
The bilateral filter is known to be quite effective in denoising images corrupted with small dosages of additive Gaussian noise. The denoising performance of the filter, however, is known to degrade quickly with the increase in noise level. Several adaptations of the filter have been proposed in the literature to address this shortcoming, but often at a substantial computational overhead. In this paper, we report a simple pre-processing step that can substantially improve the denoising performance of the bilateral filter, at almost no additional cost. The modified filter is designed to be robust at large noise levels, and often tends to perform poorly below a certain noise threshold. To get the best of the original and the modified filter, we propose to combine them in a weighted fashion, where the weights are chosen to minimize (a surrogate of) the oracle mean-squared-error (MSE). The optimally-weighted filter is thus guaranteed to perform better than either of the component filters in terms of the MSE, at all noise levels. We also provide a fast algorithm for the weighted filtering. Visual and quantitative denoising results on standard test images are reported which demonstrate that the improvement over the original filter is significant both visually and in terms of PSNR. Moreover, the denoising performance of the optimally-weighted bilateral filter is competitive with the computation-intensive non-local means filter.
Resumo:
Standard algorithms in tracking and other state-space models assume identical and synchronous sampling rates for the state and measurement processes. However, real trajectories of objects are typically characterized by prolonged smooth sections, with sharp, but infrequent, changes. Thus, a more parsimonious representation of a target trajectory may be obtained by direct modeling of maneuver times in the state process, independently from the observation times. This is achieved by assuming the state arrival times to follow a random process, typically specified as Markovian, so that state points may be allocated along the trajectory according to the degree of variation observed. The resulting variable dimension state inference problem is solved by developing an efficient variable rate particle filtering algorithm to recursively update the posterior distribution of the state sequence as new data becomes available. The methodology is quite general and can be applied across many models where dynamic model uncertainty occurs on-line. Specific models are proposed for the dynamics of a moving object under internal forcing, expressed in terms of the intrinsic dynamics of the object. The performance of the algorithms with these dynamical models is demonstrated on several challenging maneuvering target tracking problems in clutter. © 2006 IEEE.