996 resultados para Field currents


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work identifies and analyzes literature about knowledge organization (KO), expressed in scientific journals communication of information science (IS). It performs an exploratory study on the Base de Dados Referencial de Artigos de Periodicos em Ciência da Informacio (BRAPCI, Reference Database of Journal Articles on Information Science) between the years 2000 and 2010. The descriptors relating to "knowledge organization" are used in order to recover and analyze the corresponding articles and to identify descriptors and concepts which integrate the semantic universe related to KO. Through the analysis of content, based on metrical studies, this article gathers and interprets data relating to documents and authors. Through this, it demonstrates the development of this field and its research fronts according to the observed characteristics, as well as noting the transformation indicative in the production of knowledge. The work describes the influences of the Spanish researchers on Brazilian literature in the fields of knowledge and information organization. As a result, it presents the most cited and productive authors, the theoretical currents which support them, and the most significant relationships of the Spanish-Brazilian authors network. Based on the constant key-words analysis in the cited articles, the co-existence of the French conception current and the incipient Spanish influence in Brazil is observed. Through this, it contributes to the comprehension of the thematic range relating to KO, stimulating both criticism and self-criticism, debate and knowledge creation, based on studies that have been developed and institutionalized in academic contexts in Spain and Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If we replace the general spacetime group of diffeomorphisms by transformations taking place in the tangent space, general relativity can be interpreted as a gauge theory, and in particular as a gauge theory for the Lorentz group. In this context, it is shown that the angular momentum and the energy-momentum tensors of a general matter field can be obtained from the invariance of the corresponding action integral under transformations taking place, not in spacetime, but in the tangent space, in which case they can be considered as gauge currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservation laws in gravitational theories with diffeomorphism and local Lorentz symmetry are studied. Main attention is paid to the construction of conserved currents and charges associated with an arbitrary vector field that generates a diffeomorphism on the spacetime. We further generalize previous results for the case of gravitational models described by quasi-invariant Lagrangians, that is, Lagrangians that change by a total derivative under the action of the local Lorentz group. The general formalism is then applied to the teleparallel models, for which the energy and the angular momentum of a Kerr black hole are calculated. The subsequent analysis of the results obtained demonstrates the importance of the choice of the frame.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss conservation laws for gravity theories invariant under general coordinate and local Lorentz transformations. We demonstrate the possibility to formulate these conservation laws in many covariant and noncovariant(ly looking) ways. An interesting mathematical fact underlies such a diversity: there is a certain ambiguity in a definition of the (Lorentz-) covariant generalization of the usual Lie derivative. Using this freedom, we develop a general approach to the construction of invariant conserved currents generated by an arbitrary vector field on the spacetime. This is done in any dimension, for any Lagrangian of the gravitational field and of a (minimally or nonminimally) coupled matter field. A development of the regularization via relocalization scheme is used to obtain finite conserved quantities for asymptotically nonflat solutions. We illustrate how our formalism works by some explicit examples. © 2006 The American Physical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of a search for flavor changing neutral currents in top quark decays t→Zq in events with a topology compatible with the decay chain tt̄→Wb+Zq→ℓνb+ℓℓq are presented. The search is performed with a data sample corresponding to an integrated luminosity of 5.0 fb-1 of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. The observed number of events agrees with the standard model prediction and no evidence for flavor changing neutral currents in top quark decays is found. A t→Zq branching fraction greater than 0.21% is excluded at the 95% confidence level. © 2012 CERN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of geoid models to estimate the Mean Dynamic Topography was stimulated with the launching of the GRACE satellite system, since its models present unprecedented precision and space-time resolution. In the present study, besides the DNSC08 mean sea level model, the following geoid models were used with the objective of computing the MDTs: EGM96, EIGEN-5C and EGM2008. In the method adopted, geostrophic currents for the South Atlantic were computed based on the MDTs. In this study it was found that the degree and order of the geoid models affect the determination of TDM and currents directly. The presence of noise in the MDT requires the use of efficient filtering techniques, such as the filter based on Singular Spectrum Analysis, which presents significant advantages in relation to conventional filters. Geostrophic currents resulting from geoid models were compared with the HYCOM hydrodynamic numerical model. In conclusion, results show that MDTs and respective geostrophic currents calculated with EIGEN-5C and EGM2008 models are similar to the results of the numerical model, especially regarding the main large scale features such as boundary currents and the retroflection at the Brazil-Malvinas Confluence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR). Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated parameters and expected theoretical predictions. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. [http://dx.doi. org/10.1063/1.4739533]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have conducted magnetoresistance measurements rho(T,H) in applied magnetic fields up to 18 T in Bi1.65Pb0.35Sr2Ca2Cu3O10+delta ceramic samples which were subjected to different uniaxial compacting pressures. The anisotropic upper critical fields H (c2)(T) were extracted from the rho(T,H) data, yielding and the out-of-plane superconducting coherence length xi (c) (0)similar to 3 . We have also estimated and xi (ab) (0) similar to 90 . In addition to this, a flux-line-lattice (FLL) melting temperature T (m) has been identified as a second peak in the derivative of the magnetoresistance d rho/dT data close to the superconducting transition temperature. An H (m) vs. T phase diagram was constructed and the FLL boundary lines were found to obey a temperature dependence H (m) ae(T (c) /T-1) (alpha) , where alpha similar to 2 for the sample subjected to the higher compacting pressure. A reasonable value of the Lindemann parameter c (L) similar to 0.29 has been found for all samples studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, three different types of quantum rings arestudied. These are quantum rings with diamagnetic,paramagnetic or spontaneous persistent currents. It turns out that the main observable to characterizequantum rings is the Drude weight. Playing a key role inthis thesis, it will be used to distinguish betweendiamagnetic (positive Drude weight) and paramagnetic(negative Drude weight) ring currents. In most models, theDrude weight is positive. Especially in the thermodynamiclimit, it is positive semi-definite. In certain modelshowever, intuitivelysurprising, a negative Drude weight is found. This rareeffect occurs, e.g., in one-dimensional models with adegenerate ground state in conjunction with the possibilityof Umklapp scattering. One aim of this thesis is to examineone-dimensional quantum rings for the occurrence of anegative Drude weight. It is found, that the sign of theDrude weight can also be negative, if the band structurelacks particle-hole symmetry. The second aim of this thesis is the modeling of quantumrings intrinsically showing a spontaneous persistentcurrent. The construction of the model starts from theextended Hubbard model on a ring threaded by anAharonov-Bohm flux. A feedback term through which thecurrent in the ring can generate magnetic flux is added.Another extension of the Hamiltonian describes the energystored in the internally generated field. This model isevaluated using exact diagonalization and an iterativescheme to find the minima of the free energy. The quantumrings must satisfy two conditions to exhibit a spontaneousorbital magnetic moment: a negative Drude weight and aninductivity above the critical level. The magneticproperties of cyclic conjugated hydrocarbons likebenzene due to electron delocalization [magnetic anisotropy,magnetic susceptibility exaltation, nucleus-independent chemical shift (NICS)]---that have become important criteriafor aromaticity---can be examined using this model. Corrections to the presented calculations are discussed. Themost substantial simplification made in this thesis is theneglect of the Zeeman interaction of the electron spins withthe magnetic field. If a single flux tube threads a quantumring, the Zeeman interaction is zero, but in mostexperiments, this situation is difficult to realize. In themore realistic situation of a homogeneous field, the Zeemaninteraction has to be included, if the electrons have atotal spin component in the direction of the magnetic field,or if the magnetic field is strong.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic memories are a backbone of today's digital data storage technology, where the digital information is stored as the magnetic configuration of nanostructured ferromagnetic bits. Currently, the writing of the digital information on the magnetic memory is carried out with the help of magnetic fields. This approach, while viable, is not optimal due to its intrinsically high energy consumption and relatively poor scalability. For this reason, the research for different mechanisms that can be used to manipulate the magnetic configuration of a material is of interest. In this thesis, the control of the magnetization of different nanostructured materials with field-free mechanisms is investigated. The magnetic configuration of these nanostructured materials was imaged directly with high resolution x-ray magnetic microscopy. rnFirst of all, the control of the magnetic configuration of nanostructured ferromagnetic Heusler compounds by fabricating nanostructures with different geometries was analyzed. Here, it was observed that the magnetic configuration of the nanostructured elements is given by the competition of magneto-crystalline and shape anisotropy. By fabricating elements with different geometries, we could alter the point where these two effects equilibrate, allowing for the possibility to tailor the magnetic configuration of these nanostructured elements to the required necessities.rnThen, the control of the magnetic configuration of Ni nanostructures fabricated on top of a piezoelectric material with the magneto-elastic effect (i.e. by applying a piezoelectric strain to the Ni nanostructures) was investigated. Here, the magneto-elastic coupling effect gives rise to an additional anisotropy contribution, proportional to the strain applied to the magnetic material. For this system, a reproducible and reversible control of the magnetic configuration of the nanostructured Ni elements with the application of an electric field across the piezoelectric material was achieved.rnFinally, the control of the magnetic configuration of La0.7Sr0.3MnO3 (LSMO) nanostructures with spin-polarized currents was studied. Here, the spin-transfer torque effect was employed to achieve the displacement of magnetic domain walls in the LSMO nanostructures. A high spin-transfer torque efficiency was observed for LSMO at low temperatures, and a Joule-heating induced hopping of the magnetic domain walls was observed at room temperatures, allowing for the analysis of the energetics of the domain walls in LSMO.rnThe results presented in this thesis give thus an overview on the different field-free approaches that can be used to manipulate and tailor the magnetization configuration of a nanostructured material to the various technological requirements, opening up novel interesting possibilities for these materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose To investigate whether nonhemodynamic resonant saturation effects can be detected in patients with focal epilepsy by using a phase-cycled stimulus-induced rotary saturation (PC-SIRS) approach with spin-lock (SL) preparation and whether they colocalize with the seizure onset zone and surface interictal epileptiform discharges (IED). Materials and Methods The study was approved by the local ethics committee, and all subjects gave written informed consent. Eight patients with focal epilepsy undergoing presurgical surface and intracranial electroencephalography (EEG) underwent magnetic resonance (MR) imaging at 3 T with a whole-brain PC-SIRS imaging sequence with alternating SL-on and SL-off and two-dimensional echo-planar readout. The power of the SL radiofrequency pulse was set to 120 Hz to sensitize the sequence to high gamma oscillations present in epileptogenic tissue. Phase cycling was applied to capture distributed current orientations. Voxel-wise subtraction of SL-off from SL-on images enabled the separation of T2* effects from rotary saturation effects. The topography of PC-SIRS effects was compared with the seizure onset zone at intracranial EEG and with surface IED-related potentials. Bayesian statistics were used to test whether prior PC-SIRS information could improve IED source reconstruction. Results Nonhemodynamic resonant saturation effects ipsilateral to the seizure onset zone were detected in six of eight patients (concordance rate, 0.75; 95% confidence interval: 0.40, 0.94) by means of the PC-SIRS technique. They were concordant with IED surface negativity in seven of eight patients (0.88; 95% confidence interval: 0.51, 1.00). Including PC-SIRS as prior information improved the evidence of the standard EEG source models compared with the use of uninformed reconstructions (exceedance probability, 0.77 vs 0.12; Wilcoxon test of model evidence, P < .05). Nonhemodynamic resonant saturation effects resolved in patients with favorable postsurgical outcomes, but persisted in patients with postsurgical seizure recurrence. Conclusion Nonhemodynamic resonant saturation effects are detectable during interictal periods with the PC-SIRS approach in patients with epilepsy. The method may be useful for MR imaging-based detection of neuronal currents in a clinical environment. (©) RSNA, 2016 Online supplemental material is available for this article.