882 resultados para Fibre reinforced self-consolidating concrete
Resumo:
The ductility of concrete made with commercially available steel and synthetic fibres has been investigated. Flexural stress–deflection relationships have been used to determine: flexural strength, flexural toughness, equivalent flexural strength, and equivalent flexural strength ratio. The flexural toughness of concrete was found to increase considerably when steel and synthetic fibres were used. However, equal dosages of different fibres did not result in specimens with the same flexural toughness. Flexural toughness differences of almost 35 J existed even at the same fibre dosage. This also resulted in considerable differences in the minimum required ground supported slab thickness.
Resumo:
The concept of green concrete has been progressively introduced in concrete technology. At the same time, new generations of superplasticisers have become widely available and self-compacting concrete is being increasingly implemented. The aim of this research is to study the impact that different sustainable materials have on both fresh and hardened properties of Self-Compacting Fibre Reinforced Concrete (SCFRC) in order to implement their use in a precast concrete company. Different combinations of cement, mineral additions (active and inert), polypropylene fibres, superplasticisers, and aggregates have been considered. Fresh state performance has been assessed by means of: slump flow test, V-funnel, and J-ring. Concrete compressive strength values at different ages have been retained as representative of the material's performance in its hardened state. All these properties have been correlated with SCFRC proportioning parameters. The importance of interactions between mineral additions and between these and superplasticiser is emphasised, as well as the different consequences of using powders as cement replacement or as mineral additions.
Optimisation of Environment-friendly SCFRC mixes use in precast Concrete Industry (PDF Download Available). Available from: http://www.researchgate.net/publication/263304799_Optimisation_of_Environment-friendly_SCFRC_mixes_use_in_precast_Concrete_Industry [accessed Jun 5, 2015].
Resumo:
This paper presents an experimental investigation carried out on concrete cylinders confined with fibre reinforced polymers (FRP), subjected to monotonic and cyclic loading. Carbon fibres (CFRP) were used as confining material for the concrete specimens. The failure mode, reinforcement ratio based on jacket thickness and type of loading are examined. The study shows that external confinement of concrete can enhance its strength and ductility as well as result in large energy absorption capacity. This has important safety implications, especially in regions with seismic activity.
Resumo:
The structural behaviour of steel-fibre-reinforced concrete beams was studied using non-linear finite-element analysis and existing experimental data. The work aim was to examine the potential of using steel fibres to reduce the amount of conventional transverse steel reinforcement without compromising ductility and strength requirements set out in design codes. To achieve this, the spacing between shear links was increased while steel fibres were added as a substitute. Parametric studies were subsequently carried out and comparisons were also made with BS EN 1992-1-1 predictions. It was concluded that the addition of steel fibres enhanced the load-carrying capacity and also altered the failure mode from a brittle shear mode to a flexural ductile one. The provision of fibres also improved ductility. However, interestingly it was found that adding excessive amounts of fibres led to a less-ductile response. Overall, the study confirmed the potential for fibres to compensate for a reduction in conventional shear reinforcement.
Resumo:
El uso de materiales compuestos de matriz polimérica (FRP) emerge como alternativa al hormigón convencionalmente armado con acero debido a la mayor resistencia a la corrosión de dichos materiales. El presente estudio investiga el comportamiento en servicio de vigas de hormigón armadas con barras de FRP mediante un análisis teórico y experimental. Se presentan los resultados experimentales de veintiséis vigas de hormigón armadas con barras de material compuesto de fibra de vidrio (GFRP) y una armada con acero, todas ellas ensayadas a flexión de cuatro puntos. Los resultados experimentales son analizados y comparados con algunos de los modelos de predicción más significativos de flechas y fisuración, observándose, en general, una predicción adecuada del comportamiento experimental hasta cargas de servicio. El análisis de sección fisurada (CSA) estima la carga última con precisión, aunque se registra un incremento de la flecha experimental para cargas superiores a las de servicio. Esta diferencia se atribuye a la influencia de las deformaciones por esfuerzo cortante y se calcula experimentalmente. Se presentan los aspectos principales que influyen en los estados límites de servicio: tensiones de los materiales, ancho máximo de fisura y flecha máxima permitida. Se presenta una metodología para el diseño de dichos elementos bajo las condiciones de servicio. El procedimiento presentado permite optimizar las dimensiones de la sección respecto a metodologías más generales.
Resumo:
This paper is part of an extensive work about the technological development, experimental analysis and numerical modeling of steel fibre reinforced concrete pipes. The first part ("Steel fibre reinforced concrete pipes. Part 1: technological analysis of the mechanical behavior") dealt with the technological development of the experimental campaign, the test procedure and the discussion of the structural behavior obtained for each of the dosages of fibre used. This second part deals with the aspects of numerical modeling. In this respect, a numerical model called MAP, which simulates the behavior of fibre reinforced concrete pipes with medium-low range diameters, is introduced. The bases of the numerical model are also mentioned. Subsequently, the experimental results are contrasted with those produced by the numerical model, obtaining excellent correlations. It was possible to conclude that the numerical model is a useful tool for the design of this type of pipes, which represents an important step forward to establish the structural fibres as reinforcement for concrete pipes. Finally, the design for the optimal amount of fibres for a pipe with a diameter of 400 mm is presented as an illustrating example with strategic interest.