837 resultados para Fiber Raman amplifier


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hydrologic research is a very demanding application of fiber-optic distributed temperature sensing (DTS) in terms of precision, accuracy and calibration. The physics behind the most frequently used DTS instruments are considered as they apply to four calibration methods for single-ended DTS installations. The new methods presented are more accurate than the instrument-calibrated data, achieving accuracies on the order of tenths of a degree root mean square error (RMSE) and mean bias. Effects of localized non-uniformities that violate the assumptions of single-ended calibration data are explored and quantified. Experimental design considerations such as selection of integration times or selection of the length of the reference sections are discussed, and the impacts of these considerations on calibrated temperatures are explored in two case studies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rhodamine 6G and Rhodamine B dye mixture doped polymer optical fiber amplifier (POFA), which can operate in a broad wavelength region (60 nm), has been successfully fabricated and tested. Tunable operation of the amplifier over a broad wavelength region is achieved by mixing different ratios of the dyes. The dye doped POFA is pumped axially using 532 nm, 10 ns laser pulses from a frequency doubled Q-switched Nd: YAG laser and the signals are taken from an optical parametric oscillator. A maximum gain of 22.3 dB at 617 nm wavelength has been obtained for a 7 cm long dye mixture doped POFA. The effects of pump energy and length of the fiber on the performance of the fiber amplifier are also studied. There exists an optimum length for which the amplifier gain is at a maximum value.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A numerical study of As2S3 Raman fiber lasers is carried out to show their potential for the entire coverage of the 3–4-m spectral band. Experimental results are first obtained from such a laser operated under controlled conditions in order to set the fiber parameters (i.e., gain and attenuation coefficients) to be used in the numerical model. An exhaustive numerical analysis is then performed to establish the conditions for optimum lasing performances over the entire 3–4-m spectral band.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We demonstrated all-fiber amplification of 11 ps pulses from a gain-switched laser diode at 1064 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 µW of fiber-coupled average output power. For the low output pulse energy of 325 fJ we have designed a multi-stage core pumped pre-amplifier in order to keep the contribution of undesired amplified spontaneous emission as low as possible. By using a novel time-domain approach for determining the power spectral density ratio (PSD) of signal to noise, we identified the optimal working point for our pre-amplifier. After the pre-amplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we reached a total gain of 73 dB, resulting in pulse energies of >5.6 µJ and peak powers of >0.5 MW. The average PSD-ratio of signal to noise we determined to be 18/1 at the output of the final amplification stage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the properties of radiation generated in ultralong fiber lasers and find an interesting link between these optical systems and the theory of weak wave turbulence. Experimental observations strongly suggest that turbulentlike weak interactions between the multitude of laser cavity modes are responsible for practical characteristics of ultralong fiber lasers such as spectra of the output radiation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent work on ultra-long Raman fiber lasers has shown that it is possible to create quasi-lossless transmission conditions in fiber spans long enough to be considered for high speed optical communications. This paper reviews how quasi-lossless transmission conditions are reached and presents experimental results of 40Gb/s transmission in a quasi lossless system. The performance is compared with a conventional EDFA based system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Supercontinuum generation in a multi-fiber ultra-long Raman fiber laser cavity is experimentally investigated for the first time. We demonstrate significantly enhanced spectral flatness and supercontinuum generation efficiency using only conventional single mode silica fiber. With a pump power of only 1.63W a ~15dB bandwidth >260 nm wide (from 1440 to >1700nm) supercontinuum source is reported with a flatness of <1dB over 180nm using an optimised hybrid TW/HNLF cavity. We address the dependence of the supercontinuum spectrum on the input pump power and ultra-long Raman cavity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We analyze the physical mechanisms limiting optical fiber resonator length and report on the longest ever laser cavity, reaching 270 km, which shows a clearly resolvable mode structure with a width of ~120??Hz and peak separation of ~380Hz in the radio-frequency spectrum.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A multiwavelength generation in a random distributed feedback fiber laser based on hybrid Raman and erbium gain and a Lyot all-fiber spectral filter is demonstrated for the first time. The use of erbium-doped fiber allows a multi-wavelength generation to be achieved at lower pump powers in comparison with random fiber lasers based on Raman gain only. The operating bandwidth and flatness of power distribution between different lines in generation are also improved in the hybrid gain configuration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new concept of a fiber laser architecture supporting self-similar pulse evolution in the amplifier and nonlinear spectral pulse compression in the passive fiber. The latter process allows for transform-limited picosecond pulse generation, and improves the laser’s power efficiency by preventing strong spectral filtering from being highly dissipative. Aside from laser technology, the proposed scheme opens new possibilities for studying nonlinear dynamical processes. As an example, we demonstrate a clear period-doubling route to chaos in such a nonlinear laser system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of hybrid erbium-doped fiber amplifier (EDFA)/Raman amplification on a spectrally efficient coherent-wavelength-division-multiplexed (CoWDM) optical communication system is experimentally studied and modeled. Simulations suggested that 23-dB Raman gain over an unrepeatered span of 124 km single-mode fiber would allow a decrease of the mean input power of ~6 dB for a fixed bit-error rate (BER). Experimentally we demonstrated 1.2-dB Q-factor improvement for a 2-Tb/s seven-band CoWDM with backward Raman amplification. The system delivered an optical signal-to-noise ratio of 35 dB at the output of the receiver preamplifier providing a worst-case BER of 2 × 10 -6 over 49 subcarriers at 42.8 Gbaud, leaving a system margin (in terms of Q -factor) of ~4 dB from the forward-error correction threshold.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report what we believe to be the first experimental study of inter-modal cross-gain modulation and associated transient effects as different spatial modes and wavelength channels are added and dropped within a two-mode amplifier for SDM transmission.