928 resultados para Feshbach resonances
Resumo:
We perform polarization-resolved Raman spectroscopy on graphene in magnetic fields up to 45 T. This reveals a filling-factor-dependent, multicomponent anticrossing structure of the Raman G peak, resulting from magnetophonon resonances between magnetoexcitons and E2g phonons. This is explained with a model of Raman scattering taking into account the effects of spatially inhomogeneous carrier densities and strain. Random fluctuations of strain-induced pseudomagnetic fields lead to increased scattering intensity inside the anticrossing gap, consistent with the experiments. © 2013 American Physical Society.
Resumo:
Directional emission InP/AlGaInAs square-resonator microlasers with a side length of 20 mu m are fabricated by standard photolithography and inductively coupled-plasma etching technique. Multimode resonances with about seven distinct mode peaks in a free-spectral range are observed from 1460 to 1560 nm with the free-spectral range of 12.1 nm near the wavelength of 1510 nm, and the mode refractive index versus the photon energy E (eV) as 3.07152+0.18304E are obtained by fitting the laser spectra with an analytical mode wavelength formula derived by light ray method. In addition, mode field pattern is simulated for cold cavity by two dimensional finite-difference time-domain technique.
Resumo:
The currents of de and ac components and their phase-angle cosines for a superlattice under a direct bias and alternating field are calculated with the balance equations. It is found that the de currents as functions of the direct field show resonance peaks at the fields corresponding to the Bloch frequency equal to n omega. With increasing alternating field intensity the resonance peaks of higher harmonic increase, and simultaneously the first peak caused by the de field decreases. The results are in good agreement with the experimental results, indicating that this resonance can be understood in terms of electron acceleration within the miniband, i.e., it is a bulk superlattice effect, rather than caused by the electric-field localization mechanism (Wannier Stark ladder). The phase-angle cosine for the first harmonic cos phi(1) becomes negative when the Bloch frequency increases to be larger than the frequency of the ac field omega, and it also shows resonance peaks at the resonance frequencies n omega. The negative cos phi(1) may cause the energy transferred to the alternating field, i.e., oscillation of the system.
Resumo:
We propose a hybrid waveguide-plasmon system consisting of gold pillar arrays on top of a dielectric waveguide. The formation of extraordinary transmissions induced by the hybrid waveguide-plasmon resonances is investigated by rigorous coupled-wave analysis. The characteristics of the hybrid resonances can be predicted by introducing the photonic crystal slab theory. Extremely narrow absorption peaks and the electromagnetically induced transparency-like optical property are demonstrated in our hybrid system. (C) 2010 Optical Society of America
Resumo:
Surface plasmon resonances of arrays of parallel copper nanowires, embedded in ion track-etched polycarbonate membranes, were investigated by systematic changes of nanowires’ topology and arrays area density. The extinction spectra exhibit two peaks which are attributed to interband transitions of Cu bulk metal and to a dipolar surface plasmon resonance, respectively. The resonances were investigated as a function of wire diameter and length, mean distance between adjacent wires, and angle of incidence of the light field with respect to the long wire axis. The dipolar peak shifts to larger wavelengths with increasing diameter and length, and diminishing mean distance between adjacent wires. Additionally, the shape effect on the dipolar peak is investigated.
Resumo:
A theoretical study of the (p) over barp -> (p) over barn pi(+) reaction for antiproton beam energy from 1 to 4 GeV is made by including contributions from various known N* and Delta* resonances. It is found that for the beam energy around 1.5 GeV, the contribution of the Roper resonance N-(1440)* produced by the t-channel sigma exchange dominates over all other contributions. Since such a reaction can be studied in the forthcoming PANDA experiment at the GSI Facility of Antiproton and Ion Research (FAIR), the reaction will be realistically the cleanest place for studying the properties of the Roper resonance and the best place for looking for other "missing" N* resonances with large coupling to N sigma.
Resumo:
The multi-configuration Dirac Fock (MCDF) method is implemented to study doubly excited 2s2p P-1,3(1) resonances of the helium atom and the interference between photoionization and photo excitation autoionization processes. In order to reproduce the total photoionization sprectra, the excited energies from the ground 1s(2) S-1(0) state to the doubly excited 2s2p P-1,3(1) states and the relevant Auger decay rates and widths are calculated in detail. Further more, the interference profile determined by the so-called Fano parameters q and rho(2) is also reproduced. Good agreement is found between the present results and other available theoretical and experimental results. This indeed shows a promising way to investigate the Fano resonances in photoionization of atoms within the MCDF scheme, although there are some discrepancies in the present calculations of the 2s2p P-3(1) state.
Resumo:
In this report we investigate eta-meson productions oil the proton via electromagnetic and hadron probes in a chiral quark model approach. The observables, such as, differential cross section and beam asymmetry for the two productions are calculated and compared with the experiment. The five known resonances S-11(1535) S-11(1650); P-13(1720) D-13(1520), and F-15(1680) are found to be dominant in the reaction mech-anisms in both channels. Significant, contribution from a new S-11 resonances are deduced. For the so-called "missing resonances", no evidence is found within the investigated reactions. The partial wave amplitudes for pi(-)p -> eta n are also presented.
Resumo:
Correlations between the behavior of the nuclear symmetry energy, the neutron skins, and the percentage of energy-weighted sum rule (EWSR) exhausted by the pygmy dipole resonance (PDR) in Ni-68 and Sn-132 are investigated by using different random phase approximation (RPA) models for the dipole response, based on a representative set of Skyrme effective forces plus meson-exchange effective Lagrangians. A comparison with the experimental data has allowed us to constrain the value of the derivative of the symmetry energy at saturation. The neutron skin radius is deduced under this constraint.
Resumo:
The king cobra(Ophiophagus hannah) neurotoxin CM-11 is long-chain peptide with 72 amino acid residues. Its complete assignment of H-1-NMR resonances was obtained using various 2D-NMR technologies, including DQF-COSY, clean-TOCSY and NOESY.
Resumo:
The following article appeared in Torres, V., Beruete, M., Del Villar, I., & Sánchez, P. (2016). Indium tin oxide refractometer in the visible and near infrared via lossy mode and surface plasmon resonances with Kretschmann configuration. Applied Physics Letters, 108(4), doi:10.1063/1.4941077, and may be found at http://dx.doi.org/10.1063/1.4941077.
Resumo:
Forward stimulated Brillouin scattering (FSBS) is observed in a standard 2-km-long highly nonlinear fiber. The frequency of FSBS arising from multiple radially guided acoustic resonances is observed up to gigahertz frequencies. The tight confinement of the light and acoustic field enhances the interaction and results in a large gain coefficient of 34.7 W(-1) at a frequency of 933.8 MHz. We also find that the profile on the anti-Stokes side of the pump beam have lineshapes that are asymmetric, which we show is due to the interference between FSBS and the optical Kerr effect. The measured FSBS resonance linewidths are found to increase linearly with the acoustic frequency. Based on this scaling, we conclude that dominant contribution to the linewidth is from surface damping due to the fiber jacket and structural nonuniformities along the fiber.