968 resultados para Ferrites (Magnetic materials)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent advances in technology involving magnetic materials require development of novel advanced magnetic materials with improved magnetic and magneto-transport properties and with reduced dimensionality. Therefore magnetic materials with outstanding magnetic characteristics and reduced dimensionality have recently gained much attention. Among these magnetic materials a family of thin wires with reduced geometrical dimensions (of order of 1-30 mu m in diameter) have gained importance within the last few years. These thin wires combine excellent soft magnetic properties (with coercivities up to 4 A/m) with attractive magneto-transport properties (Giant Magneto-impedance effect, GMI, Giant Magneto-resistance effect, GMR) and an unusual re-magnetization process in positive magnetostriction compositions exhibiting quite fast domain wall propagation. In this paper we overview the magnetic and magneto-transport properties of these microwires that make them suitable for microsensor applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Over the past few decades, ferromagnetic spinwave resonance in magnetic thin films has been used as a tool for studying the properties of magnetic materials. A full understanding of the boundary conditions at the surface of the magnetic material is extremely important. Such an understanding has been the general objective of this thesis. The approach has been to investigate various hypotheses of the surface condition and to compare the results of these models with experimental data. The conclusion is that the boundary conditions are largely due to thin surface regions with magnetic properties different from the bulk. In the calculations these regions were usually approximated by uniform surface layers; the spins were otherwise unconstrained except by the same mechanisms that exist in the bulk (i.e., no special "pinning" at the surface atomic layer is assumed). The variation of the ferromagnetic spinwave resonance spectra in YIG films with frequency, temperature, annealing, and orientation of applied field provided an excellent experimental basis for the study.

This thesis can be divided into two parts. The first part is ferromagnetic resonance theory; the second part is the comparison of calculated with experimental data in YIG films. Both are essential in understanding the conclusion that surface regions with properties different from the bulk are responsible for the resonance phenomena associated with boundary conditions.

The theoretical calculations have been made by finding the wave vectors characteristic of the magnetic fields inside the magnetic medium, and then combining the fields associated with these wave vectors in superposition to match the specified boundary conditions. In addition to magnetic boundary conditions required for the surface layer model, two phenomenological magnetic boundary conditions are discussed in detail. The wave vectors are easily found by combining the Landau-Lifshitz equations with Maxwell's equations. Mode positions are most easily predicted from the magnetic wave vectors obtained by neglecting damping, conductivity, and the displacement current. For an insulator where the driving field is nearly uniform throughout the sample, these approximations permit a simple yet accurate calculation of the mode intensities. For metal films this calculation may be inaccurate but the mode positions are still accurately described. The techniques necessary for calculating the power absorbed by the film under a specific excitation including the effects of conductivity, displacement current and damping are also presented.

In the second part of the thesis the properties of magnetic garnet materials are summarized and the properties believed associated with the two surface regions of a YIG film are presented. Finally, the experimental data and calculated data for the surface layer model and other proposed models are compared. The conclusion of this study is that the remarkable variety of spinwave spectra that arises from various preparation techniques and subsequent treatments can be explained by surface regions with magnetic properties different from the bulk.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As nanopartículas de ferritas de manganês (MnFe2O4) tem sido de grande interesse por causa de suas notáveis propriedades magnéticas doces (baixa coercividade e moderada magnetização de saturação) acompanhada com boa estabilidade química e dureza mecânica. A formação de materiais híbridos/compósito estabiliza as nanopartículas magnéticas (NPMs) e gera funcionalidades aos materiais. Entretanto, não foi encontrada na literatura uma discussão sobre a síntese e as propriedades de polímeros polares reticulados à base de ácido metacrílico contendo ferritas de manganês na matriz polimérica. Assim, o objetivo desta Dissertação foi produzir partículas esféricas poliméricas reticuladas, com boas propriedades magnéticas, à base de ácido metacrílico, estireno, divinilbenzeno e ferritas de manganês. Neste trabalho, foram sintetizados compósitos de ferrita de manganês (MnFe2O4) dispersa em copolímeros de poli(ácido-metacrílico-co-estireno-co-divinilbenzeno), via polimerização em suspensão e em semi-suspensão. Foram variados os teores de ferrita (1% e 5%) e a concentração do agente de suspensão (0,2% e 5%). Além disso, foram testadas sínteses contendo a fase orgânica pré-polimerizada, e também a mistura da ferrita na fase orgânica (FO), antes da etapa da polimerização em suspensão. Os copolímeros foram analisados quanto as suas morfologias - microscopia óptica; propriedades magnéticas e distribuição das ferritas na matriz polimérica - VSM, SEM e EDS-X; propriedades térmicas TGA; concentração de metais presentes na matriz polimérica absorção atômica. As ferritas foram avaliadas quanto à cristalografia XRD. A matriz polimérica foi avaliada pela técnica de FTIR. As amostras que foram pré-polimerizadas e as que além de pré-polimerizadas foram misturadas as ferritas de manganês na FO, apresentaram as melhores propriedades magnéticas e uma incorporação maior da ferrita na matriz polimérica. Essas rotas sintéticas fizeram com que os copolímeros não apresentassem aglomeração, e também minimizou a presença de ferritas na superfície das microesferas. Em geral, todos os copolímeros obtidos apresentaram as características de materiais magneticamente doces além do superparamagnetismo. Foi constatado que o aumento da concentração do PVA e a diminuição da concentração da ferrita fazem com que os diâmetros das microesferas decresçam. Os resultados de TGA e DTG mostraram que ao misturar as ferritas na FO, a concentração de material magnético na matriz polimérica aumenta cerca de 10%. Entretanto, somente a amostra PM2550, pré-polimerizada e com as ferritas misturadas na FO (5% de ferrita e 0,2% de PVA), apresentou potencial aplicação. Isso porque as ferritas não ficaram expostas na superfície das microesferas, ou seja, o material magnético fica protegido de qualquer ação externa

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ternary CoNiP nanowire (NW) arrays have been synthesized by electrochemical deposition inside the nanochannels of anodic aluminum oxide (AAO) template. The CoNiP NWs deposited at room temperature present soft magnetic properties, with both parallel and perpendicular coercivities less than 500 Oe. In contrast, as the electrolyte temperature (T-elc) increases from 323 to 343 K, the NWs exhibit hard magnetic properties with coercivities in the range of 1000-2500 Oe. This dramatic increase in coercivities can be attributed to the domain wall pinning that is related to the formation of Ni and Co nanocrystallites and the increase of P content. The parallel coercivity (i.e. the applied field perpendicular to the membrane surface) maximum as high as 2500 Oe with squareness ratio up to 0.8 is achieved at the electrolyte temperature of 328 K. It has been demonstrated that the parallel coercivity of CoNiP NWs can be tuned in a wide range of 200-2500 Oe by controlling the electrolyte temperature, providing an easy way to control magnetic properties and thereby for their integration with magnetic-micro-electromechanical systems (MEMS). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the design of high-speed low-power electrical generators for unmanned aircraft and spacecraft, maximization of specific output (power/weight) is of prime importance. Several magnetic circuit configurations (radial-field, axial-field, flux-squeezing, homopolar) have been proposed, and in this paper the relative merits of these configurations are subjected to a quantitative investigation over the speed range 10 000–100000 rev/min and power range 250 W-10 kW. The advantages of incorporating new high energy-density magnetic materials are described. Part I deals with establishing an equivalent circuit for permanent-magnet generators. For each configuration the equivalent circuit parameters are related to the physical dimensions of the generator components and an optimization procedure produces a minimum volume design at discrete output powers and operating speeds. The technique is illustrated by a quantitative comparison of the specific outputs of conventional radial-field generators with samarium cobalt and alnico magnets. In Part II the specific outputs of conventional, flux-squeezing, and claw-rotor magnetic circuit configurations are compared. The flux-squeezing configuration is shown to produce the highest specific output for small sizes whereas the conventional configuration is best at large sizes. For all sizes the claw-rotor configuration is significantly inferior. In Part III the power densities available from axial-field and flux-switching magnetic circuit configurations are maximized, over the power range 0.25-10 kW and speed range 10 000–100000 rpm, and compared to the results of Parts I & II. For the axial-field configuration the power density is always less than that of the conventional and flux-squeezing radial-field configurations. For the flux-switching generator, which is able to withstand relatively high mechanical forces in the rotor, the power density is again inferior to the radial-field types, but the difference is less apparent for small (low power, high speed) generator sizes. From the combined results it can be concluded that the flux-squeezing and conventional radial-field magnetic circuit configurations yield designs with minimum volume over the power and speed ranges considered. © 1985, IEEE. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An orthorhombic DyMnO3 single crystal has been studied in magnetic fields up to 14 T and between 3 K and room temperature. The field dependent ordering temperature of Dy moments is deduced. The paramagnetic Curie Weiss behavior is related mainly to the Dy3+sublattice whereas the Mn sublattice contribution plays a secondary role. DC magnetization measurements show marked anisotropic features, related to the anisotropic structure of a cubic system stretched along a body diagonal, with a magnetic easy axis parallel to the crystallographic b axis. A temperature and field dependent spin flop transition is observed below 9 K, when relatively weak magnetocrystalline anisotropy is overcome by magnetic fields up to 1.6 T. © 2013 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The magnetocaloric effect in magnetic materials is of great interest nowadays. In this article we present an investigation about the magnetic properties near the magnetic transition in a polycrystalline sample of a manganite Tb0.9 Sn0.1 MnO3. Particularly, we are interested in describing the nature of the magnetic interactions and the magnetocaloric effect in this compound. The temperature dependence of the magnetization was measured to determine the characteristics of the magnetic transition and the magnetic entropy change was calculated from magnetization curves at different temperatures. The magnetic solid is paramagnetic at high temperatures. We observe a dominant antiferromagnetic interaction below Tn =38 K for low applied magnetic fields; the presence of Sn doping in this compound decreases the Ńel temperature of the pure TbMnO3 system. A drastic increase in the magnetization as a function of temperature near the magnetic transition suggests a strong magnetocaloric effect. We found a large magnetic entropy change Δ SM (T) of about -4 J/kg K at H=3 T. We believe that the magnetic entropy change is associated with the magnetic transition and we interpret it as due to the coupling between the magnetic field and the spin ordering. This relatively large value and broad temperature interval (about 35 K) of the magnetocaloric effect make the present compound a promising candidate for magnetic refrigerators at low temperatures. © 2007 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report about the magnetoresistive properties of calcium-doped lanthanum manganate thin films grown by RF magnetron sputtering on single crystalline LaAlO3 and MgO substrates. Two orientations of the magnetic field with respect to the electrical current have been studied: (i) magnetic field in the plane of the film and parallel to the electrical current, and (ii) magnetic field perpendicular to the plane of the film. The film grown on LaAlO 3 is characterised by an unusual magnetoresistive behaviour when the magnetic field is applied perpendicular to the film plane: the appearance of two bumps in the field dependence of the resistance is shown to be related to the occurrence of anisotropic magnetoresistive effects in manganate films. © 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The magnetic properties of RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds which crystallize in the ScFe6Ga6-type structure have been studied. The compounds with R, Y, Tb, Dy, Ho and Er display behaviour similar to semiconductors. The Co transition metal sublattice is ferrimagnetic with a very low spontaneous magnetization. The ferrimagnetic ordering observed for R = Y, Tb, Dy, Ho and Er is due to the transition metal sublattice with transition temperatures at about 295 K. At low temperatures, the magnetic ordering for R Tb, Dy, Ho and Er is due to the rare-earth sublattice, which is ferromagnetic with a Curie temperature below 5 K. By fitting the linear part of the inverse magnetization, the effective magnetic moment of the R ion is found to be close to its expected theoretical value, with paramagnetic Curie temperatures below 5 K. Due to the paramagnetic nature of the R sublattice above 60 K, the ferrimagnetic ordering temperature of the Co sublattice does not vary with the type of rare-earth ion. The irreversibility of the magnetization of YCo5Ga7, as measured in zero-field cooled (ZFC) and field cooled (FC) states, is attributed to movement of domain walls. Application of a large enough applied field completes the movement of the domain wall from the low-temperature to the high-temperature one at 5 K. With a very low magnetic field 100 Oe, the difference between the ZFC and the FC shrinks. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The crystallographic and intrinsic magnetic properties of hydride R3Fe29-xTxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy; T=V and Cr) have been investigated. The lattice constants and the unit cell volume of R3Fe29-xTxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Regular anisotropic expansions, mainly along the a- and b-axis rather than along the c-axis, are observed for all the compounds upon hydrogenation. Hydrogenation leads to an increase in Curie temperature. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and Tb(3)Fc(27.0)Cr(2.0)H(2.8), and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2 Abnormal crystallographic and magnetic properties of Ce3Fe29-xTxHy suggest that the Ce ion is non-triply ionized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sm3Fe26.7V2.3N4 nitrides and Sm3Fe26.7V2.3Cy carbides have been synthesized by gas-solid phase reaction. Their hard magnetic properties have been investigated by means of additional ball-milling at room temperature. The saturation magnetization of Sm3Fe26.7V2.3N4 almost decreases linearly with increasing ball-milling time t, but that of Sm3Fe26.7V2.3Cy has no obvious change when the ball-milling time increases from t = 1 to 28 h. As a preliminary result, the maximum remanence B-r of 0.94 and 0.88 T, the coercivity mu(0i)H(C) of 0.75 and 0.25 T, and the maximum energy product (BH) of 108.5 and 39.1 kJ/m(3) for their resin-bonded permanent magnets are achieved, respectively, by ball-milling at 293 K. (C) 1999 Published by Elsevier Science B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29 - xVxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants a, b, and c and the unit cell volume of R3Fe29 - xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29 - xVx with R = Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y = 6.5 and 6.9 in these hydrides. (C) 1998 Elsevier Science B.V. All rights reserved.