1000 resultados para Fermi-Ulam model
Resumo:
We propose an alternative formulation of the Standard Model which reduces the number of free parameters. In our framework, fermionic fields are assigned to fundamental representations of the Lorentz and the internal symmetry groups, whereas bosonic field variables transform as direct products of fundamental representations of all symmetry groups. This allows us to reduce the number of fundamental symmetries. We formulate the Standard Model by considering the SU(3) and SU(2) symmetry groups as the underlying symmetries of the fundamental interactions. This allows us to suggest a model, for the description of the interactions of the intermediate bosons among themselves and interactions of fermions, that makes use of just two parameters. One parameter characterizes the symmetric phase, whereas the other parameter (the asymmetry parameter) gives the breakdown strength of the symmetries. All coupling strengths of the Standard Model are then derived in terms of these two parameters. In particular, we show that all fermionic electric charges result from symmetry breakdown.
Resumo:
We report on experimental studies of the Kondo physics and the development of non-Fermi-liquid scaling in UCu(4+x)Al(8-x) family. We studied 7 different compounds with compositions between x = 0 and 2. We measured electrical transport (down to 65 mK) and thermoelectric power (down to 1.8 K) as a function of temperature, hydrostatic pressure, and/or magnetic field. Compounds with Cu content below x = 1.25 exhibit long-range antiferromagnetic order at low temperatures. Magnetic order is suppressed with increasing Cu content and our data indicate a possible quantum critical point at x(cr) approximate to 1.15. For compounds with higher Cu content, non-Fermi-liquid behavior is observed. Non-Fermi-liquid scaling is inferred from electrical resistivity results for the x = 1.25 and 1.5 compounds. For compounds with even higher Cu content, a sharp kink occurs in the resistivity data at low temperatures, and this may be indicative of another quantum critical point that occurs at higher Cu compositions. For the magnetically ordered compounds, hydrostatic pressure is found to increase the Neel temperature, which can be understood in terms of the Kondo physics. For the non-magnetic compounds, application of a magnetic field promotes a tendency toward Fermi-liquid behavior. Thermoelectric power was analyzed using a two-band Lorentzian model, and the results indicate one fairly narrow band (10 meV and below) and a second broad band (around hundred meV). The results imply that there are two relevant energy scales that need to be considered for the physics in this family of compounds. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We observe experimentally a deviation of the radius of a Bose-Einstein condensate from the standard Thomas-Fermi prediction, after free expansion, as a function of temperature. A modified Hartree-Fock model is used to explain the observations, mainly based on the influence of the thermal cloud on the condensate cloud.
Resumo:
Recent developments in the field of ultracold gases has led to the production of degenerate samples of polar molecules. These have large static electric-dipole moments, which in turn causes the molecules to interact strongly. We investigate the interaction of polar particles in waveguide geometries subject to an applied polarizing field. For circular waveguides, tilting the direction of the polarizing field creates a periodic inhomogeneity of the interparticle interaction. We explore the consequences of geometry and interaction for stability of the ground state within the Thomas-Fermi model. Certain combinations of tilt angles and interaction strengths are found to preclude the existence of a stable Thomas-Fermi ground state. The system is shown to exhibit different behavior for quasi-one-dimensional and three-dimensional trapping geometries.
Resumo:
Within the framework of the mean-field hydrodynamic model of a degenerate Fermi gas ( DFG), we study, by means of numerical methods and variational approximation ( VA), the formation of fundamental gap solitons ( FGSs) in a DFG ( or in a BCS superfluid generated by weak interaction between spin- up and spin- down fermions), which is trapped in a periodic optical- lattice ( OL) potential. An effectively one- dimensional ( 1D) con. guration is considered, assuming strong transverse confinement; in parallel, a proper 1D model of the DFG ( which amounts to the known quintic equation for the Tonks- Girardeau gas in the OL) is considered too. The FGSs found in the first two bandgaps of the OL- induced spectrum ( unless they are very close to edges of the gaps) feature a ( tightly bound) shape, being essentially confined to a single cell of the OL. In the second bandgap, we also find antisymmetric tightly bound subfundamental solitons ( SFSs), with zero at the midpoint. The SFSs are also confined to a single cell of the OL, but, unlike the FGSs, they are unstable. The predicted solitons, consisting of similar to 10(4) - 10(5) atoms, can be created by available experimental techniques in the DFG of Li-6 atoms.
Resumo:
Using the complete numerical solution of a time-dependent three-dimensional rnean-field model we study the Josephson oscillation of a superfluid Fermi gas (SFG) at zero temperature formed in a combined axially-symmetric harmonic plus one-dimensional periodic optical-lattice (OL) potentials after displacing the harmonic trap along the axial OL axis. We study the dependence of Josephson frequency on the strength of the OL potential. The Josephson frequency decreases with increasing strength as found in the experiment of Cataliotti et al. [Science 293, 843 (2001)] for a Bose-Einstein condensate and of the experiment of Pezze et al. [Phys. Rev. Lett. 93, 120401 (2004)] for an ideal Fermi gas. We demonstrate a breakdown of Josephson oscillation in the SFG for a large displacement of the harmonic trap. These features of Josephson oscillation of a SFG can be tested experimentally.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We introduce a quasianalytic nonlinear Schrodinger equation with beyond mean-field corrections to describe the dynamics of a zero-temperature dilute superfluid Fermi gas in the crossover from the weak-coupling Bardeen-Cooper-Schrieffer (BCS) regime, where k(F)parallel to a parallel to << 1 with a the s-wave scattering length and k(F) the Fermi momentum, through the unitarity limit k(F)a ->+/-infinity to the Bose-Einstein condensation (BEC) regime where k(F)a > 0. The energy of our model is parametrized using the known asymptotic behavior in the BCS, BEC, and the unitarity limits and is in excellent agreement with accurate Green's-function Monte Carlo calculations. The model generates good results for frequencies of collective breathing oscillations of a trapped Fermi superfluid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)