895 resultados para Feller pig. Instrumented pigs. Pipeline engineering. Pipeline inspection
Resumo:
In this article, a model for the determination of displacements, strains, and stresses of a submarine pipeline during its construction is presented. Typically, polyethylene outfall pipelines are the ones treated by this model. The process is carried out from an initial floating situation to the final laying position on the seabed. The following control variables are considered in the laying process: the axial load in the pipe, the flooded inner length, and the distance of the control barge from the coast. External loads such as self-weight, dead loads, and forces due to currents and small waves are also taken into account.This paper describes both the conceptual framework for the proposed model and its practical application in a real engineering situation. The authors also consider how the model might be used as a tool to study how sensitive the behavior of the pipeline is to small changes in the values of the control variables. A detailed description of the actions is considered, especially the ones related to the marine environment such as buoyancy, current, and sea waves. The structural behavior of the pipeline is simulated in the framework of a geometrically nonlinear dynamic analysis. The pipeline is assumed to be a two-dimensional Navier_Bernoulli beam. In the nonlinear analysis an updated Lagrangian formulation is used, and special care is taken regarding the numerical aspects of sea bed contact, follower forces due to external water pressures, and dynamic actions. The paper concludes by describing the implementation of the proposed techniques, using the ANSYS computer program with a number of subroutines developed by the authors. This implementation permits simulation of the two-dimensional structural pipe behavior of the whole construction process. A sensitivity analysis of the bending moments, axial forces, and stresses for different values of the control variables is carried out. Using the techniques described, the engineer may optimize the construction steps in the pipe laying process
Resumo:
Issued October 1977.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Grain boundaries (GBs), particularly ferrite: ferrite GBs, of X70 pipeline steel were characterized using analytical electron microscopy (AEM) in order to understand its intergranular stress corrosion cracking (IGSCC) mechanism(s). The microstructure consisted of ferrite (alpha), carbides at ferrite GBs, some pearlite and some small precipitates inside the ferrite grains. The precipitates containing Ti, Nb, V and N were identified as complex carbo-nitrides and designated as (Ti, Nb, WC, N). The GB carbides occurred (1) as carbides along ferrite GBs, (2) at triple points, and (3) at triple points and extending along the three ferrite GBs. The GB carbides were Mn rich, were sometimes also Si rich, contained no micro-alloying elements (Ti, Nb, V) and also contained no N. It was not possible to measure the GB carbon concentration due to surface hydrocarbon contamination despite plasma cleaning and glove bag transfer from the plasma cleaner to the electron microscope. Furthermore, there may not be enough X-ray signal from the small amount of carbon at the GBs to enable measurement using AEM. However, the microstructure does indicate that carbon does segregate to alpha : alpha GBs during microstructure development. This is particularly significant in relation to the strong evidence in the literature linking the segregation of carbon at GBs to IGSCC. It was possible to measure all other elements of interest. There was no segregation at alpha : alpha GBs, in particular no S, P and N, and also no segregation of the micro-alloying elements, Ti, Nb and V. (C) 2003 Kluwer Academic Publishers.
Resumo:
The initiation of stress corrosion cracking (SCC) was studied using scanning electron microscope observations of linearly increasing stress test specimens. SCC initiation from the following surfaces was studied: (i) initiation from the commercial pipe surface covered by the Zn coating, (ii) initiation from a mechanically polished surface with a deformed layer, and (iii) initiation from an electro-polished surface. SCC initiation involved different features for these surfaces as follows. (i) For the Zn coated commercial pipe surface, a crack in the Zn coating led to the dissolution of the deformed layer and when the deformed layer was penetrated, intergranular SCC initiation became possible. (ii) For a mechanically polished surface with a deformed layer, cracks in the surface oxide concentrated the anodic dissolution to such an extent that there was transgranular SCC in the deformed layer. SCC was intergranular when the deformed layer had been penetrated. Transgranular stress corrosion cracks were stopped at ferrite grain boundaries (GBs) oriented perpendicular to the SCC propagation direction. (iii) For an electro-polished surface, the surface oxide film was cracked at many locations, but intergranular SCC only propagated into the steel when the oxide crack corresponded to a GB. An oxide crack away from a GB is expected to be healed. The observed SCC initiation mechanism was not associated with simple preferential chemical attack of the ferrite GBs. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Coal fired power generation will continue to provide energy to the world for the foreseeable future. However, this energy use is a significant contributor to increased atmospheric CO2 concentration and, hence, global warming. Capture and disposal Of CO2 has received increased R&D attention in the last decade as the technology promises to be the most cost effective for large scale reductions in CO2 emissions. This paper addresses CO2 transport via pipeline from capture site to disposal site, in terms of system optimization, energy efficiency and overall economics. Technically, CO2 can be transported through pipelines in the form of a gas, a supercritical. fluid or in the subcooled liquid state. Operationally, most CO2 pipelines used for enhanced oil recovery transport CO2 as a supercritical fluid. In this paper, supercritical fluid and subcooled liquid transport are examined and compared, including their impacts on energy efficiency and cost. Using a commercially available process simulator, ASPEN PLUS 10.1, the results show that subcooled liquid transport maximizes the energy efficiency and minimizes the Cost Of CO2 transport over long distances under both isothermal and adiabatic conditions. Pipeline transport of subcooled liquid CO2 can be ideally used in areas of cold climate or by burying and insulating the pipeline. In very warm climates, periodic refrigeration to cool the CO2 below its critical point of 31.1 degrees C, may prove economical. Simulations have been used to determine the maximum safe pipeline distances to subsequent booster stations as a function of inlet pressure, environmental temperature and ground level heat flux conditions. (c) 2005 Published by Elsevier Ltd.
Resumo:
The existing method of pipeline health monitoring, which requires an entire pipeline to be inspected periodically, is unproductive. A risk-based decision support system (DSS) that reduces the amount of time spent on inspection has been presented. The risk-based DSS uses the analytic hierarchy process (AHP), a multiple attribute decision-making technique, to identify the factors that influence failure on specific segments and analyzes their effects by determining probability of occurrence of these risk factors. The severity of failure is determined through consequence analysis. From this, the effect of a failure caused by each risk factor can be established in terms of cost and the cumulative effect of failure is determined through probability analysis. The model optimizes the cost of pipeline operations by reducing subjectivity in selecting a specific inspection method, identifying and prioritizing the right pipeline segment for inspection and maintenance, deriving budget allocation, providing guidance to deploy the right mix labor for inspection and maintenance, planning emergency preparation, and deriving logical insurance plan. The proposed methodology also helps derive inspection and maintenance policy for the entire pipeline system, suggest design, operational philosophy, and construction methodology for new pipelines.
Resumo:
The slow down in the drug discovery pipeline is, in part, owing to a lack of structural and functional information available for new drug targets. Membrane proteins, the targets of well over 50% of marketed pharmaceuticals, present a particular challenge. As they are not naturally abundant, they must be produced recombinantly for the structural biology that is a prerequisite to structure-based drug design. Unfortunately, however, obtaining high yields of functional, recombinant membrane proteins remains a major bottleneck in contemporary bioscience. While repeated rounds of trial-and-error optimization have not (and cannot) reveal mechanistic details of the biology of recombinant protein production, examination of the host response has provided new insights. To this end, we published an early transcriptome analysis that identified genes implicated in high-yielding yeast cell factories, which has enabled the engineering of improved production strains. These advances offer hope that the bottleneck of membrane protein production can be relieved rationally.
Resumo:
Presents information on a study which proposed a decision support system (DSS) for a petroleum pipeline route selection with the application of analytical hierarchy process. Factors governing route-selection for cross-country petroleum pipelines; Application of the DSS from an Indian perspective; Cost benefit comparison of the shortest route and the optimal route; Results and findings.
Resumo:
In the Oil industry, oil and gas pipelines are commonly utilized to perform the transportation of production fluids to longer distances. The maintenance of the pipelines passes through the analysis of several tools, in which the most currently used are the pipelines inspection cells, popularly knowing as PIG. Among the variants existing in the market, the instrumented PIG has a significant relevance; acknowledging that through the numerous sensors existing in the equipment, it can detect faults or potential failure along the inspected line. Despite its versatility, the instrumented PIG suffers from speed variations, impairing the reading of sensors embedded in it. Considering that PIG moves depending on the speed of the production fluid, a way to control his speed is to control the flow of the fluid through the pressure control, reducing the flow rate of the produced flow, resulting in reduction of overall production the fluid in the ducts own or with the use of a restrictive element (valve) installed on it. The characteristic of the flow rate/pressure drop from restrictive elements of the orifice plate is deducted usually from the ideal energy equation (Bernoulli’s equation) and later, the losses are corrected normally through experimental tests. Thus, with the objective of controlling the fluids flow passing through the PIG, a valve shutter actuated by solenoid has been developed. This configuration allows an ease control and stabilization of the flow adjustment, with a consequent response in the pressure drops between upstream and downstream of the restriction. It was assembled a test bench for better definition of flow coefficients; composed by a duct with intern diameter of four inches, one set of shutters arranged in a plate and pressure gauges for checking the pressure drop in the test. The line was pressurized and based on the pressure drop it was possible to draw a curve able to characterize the flow coefficient of the control valve prototype and simulate in mockup the functioning, resulting in PIG speed reduction of approximately 68%.
Resumo:
The feral pig, Sus scrofa, is a widespread and abundant invasive species in Australia. Feral pigs pose a significant threat to the environment, agricultural industry, and human health, and in far north Queensland they endanger World Heritage values of the Wet Tropics. Historical records document the first introduction of domestic pigs into Australia via European settlers in 1788 and subsequent introductions from Asia from 1827 onwards. Since this time, domestic pigs have been accidentally and deliberately released into the wild and significant feral pig populations have become established, resulting in the declaration of this species as a class 2 pest in Queensland. The overall objective of this study was to assess the population genetic structure of feral pigs in far north Queensland, in particular to enable delineation of demographically independent management units. The identification of ecologically meaningful management units using molecular techniques can assist in targeting feral pig control to bring about effective long-term management. Molecular genetic analysis was undertaken on 434 feral pigs from 35 localities between Tully and Innisfail. Seven polymorphic and unlinked microsatellite loci were screened and fixation indices (FST and analogues) and Bayesian clustering methods were used to identify population structure and management units in the study area. Sequencing of the hyper-variable mitochondrial control region (D-loop) of 35 feral pigs was also examined to identify pig ancestry. Three management units were identified in the study at a scale of 25 to 35 km. Even with the strong pattern of genetic structure identified in the study area, some evidence of long distance dispersal and/or translocation was found as a small number of individuals exhibited ancestry from a management unit outside of which they were sampled. Overall, gene flow in the study area was found to be influenced by environmental features such as topography and land use, but no distinct or obvious natural or anthropogenic geographic barriers were identified. Furthermore, strong evidence was found for non-random mating between pigs of European and Asian breeds indicating that feral pig ancestry influences their population genetic structure. Phylogenetic analysis revealed two distinct mitochondrial DNA clades, representing Asian domestic pig breeds and European breeds. A significant finding was that pigs of Asian origin living in Innisfail and south Tully were not mating randomly with European breed pigs populating the nearby Mission Beach area. Feral pig control should be implemented in each of the management units identified in this study. The control should be coordinated across properties within each management unit to prevent re-colonisation from adjacent localities. The adjacent rainforest and National Park Estates, as well as the rainforest-crop boundary should be included in a simultaneous control operation for greater success.