977 resultados para Feature space


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the security of a specific class of common watermarking methods based on Dither modulation-quantisation index modulation (DM-QIM) and focusing on watermark-only attacks (WOA). The vulnerabilities of and probable attacks on lattice structure based watermark embedding methods have been presented in the literature. DM-QIM is one of the best known lattice structure based watermarking techniques. In this paper, the authors discuss a watermark-only attack scenario (the attacker has access to a single watermarked content only). In the literature it is an assumption that DM-QIM methods are secure to WOA. However, the authors show that the DM-QIM based embedding method is vulnerable against a guided key guessing attack by exploiting subtle statistical regularities in the feature space embeddings for time series and images. Using a distribution-free algorithm, this paper presents an analysis of the attack and numerical results for multiple examples of image and time series data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the security of a specific class of common watermarking methods based on Dither modulation-quantisation index modulation (DM-QIM) and focusing on watermark-only attacks (WOA). The vulnerabilities of and probable attacks on lattice structure based watermark embedding methods have been presented in the literature. DM-QIM is one of the best known lattice structure based watermarking techniques. In this paper, the authors discuss a watermark-only attack scenario (the attacker has access to a single watermarked content only). In the literature it is an assumption that DM-QIM methods are secure to WOA. However, the authors show that the DM-QIM based embedding method is vulnerable against a guided key guessing attack by exploiting subtle statistical regularities in the feature space embeddings for time series and images. Using a distribution-free algorithm, this paper presents an analysis of the attack and numerical results for multiple examples of image and time series data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute life-threatening events are mostly predictable in adults and children. Despite real-time monitoring these events still occur at a rate of 4%. This paper describes an automated prediction system based on the feature space embedding and time series forecasting methods of the SpO2 signal; a pulsatile signal synchronised with heart beat. We develop an age-independent index of abnormality that distinguishes patient-specific normal to abnormal physiology transitions. Two different methods were used to distinguish between normal and abnormal physiological trends based on SpO2 behaviour. The abnormality index derived by each method is compared against the current gold standard of clinical prediction of critical deterioration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein-DNA interactions are an essential feature in the genetic activities of life, and the ability to predict and manipulate such interactions has applications in a wide range of fields. This Thesis presents the methods of modelling the properties of protein-DNA interactions. In particular, it investigates the methods of visualising and predicting the specificity of DNA-binding Cys2His2 zinc finger interaction. The Cys2His2 zinc finger proteins interact via their individual fingers to base pair subsites on the target DNA. Four key residue positions on the a- helix of the zinc fingers make non-covalent interactions with the DNA with sequence specificity. Mutating these key residues generates combinatorial possibilities that could potentially bind to any DNA segment of interest. Many attempts have been made to predict the binding interaction using structural and chemical information, but with only limited success. The most important contribution of the thesis is that the developed model allows for the binding properties of a given protein-DNA binding to be visualised in relation to other protein-DNA combinations without having to explicitly physically model the specific protein molecule and specific DNA sequence. To prove this, various databases were generated, including a synthetic database which includes all possible combinations of the DNA-binding Cys2His2 zinc finger interactions. NeuroScale, a topographic visualisation technique, is exploited to represent the geometric structures of the protein-DNA interactions by measuring dissimilarity between the data points. In order to verify the effect of visualisation on understanding the binding properties of the DNA-binding Cys2His2 zinc finger interaction, various prediction models are constructed by using both the high dimensional original data and the represented data in low dimensional feature space. Finally, novel data sets are studied through the selected visualisation models based on the experimental DNA-zinc finger protein database. The result of the NeuroScale projection shows that different dissimilarity representations give distinctive structural groupings, but clustering in biologically-interesting ways. This method can be used to forecast the physiochemical properties of the novel proteins which may be beneficial for therapeutic purposes involving genome targeting in general.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

∗ The work was supported by the RFBR under Grant N04-01-00858.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the new pattern recognition method based on the unification of algebraic and statistical approaches is described. The main point of the method is the voting procedure upon the statistically weighted regularities, which are linear separators in two-dimensional projections of feature space. The report contains brief description of the theoretical foundations of the method, description of its software realization and the results of series of experiments proving its usefulness in practical tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute life threatening events such as cardiac/respiratory arrests are often predictable in adults and children. However critical events such as unplanned extubations are considered as not predictable. This paper seeks to evaluate the ability of automated prediction systems based on feature space embedding and time series methods to predict unplanned extubations in paediatric intensive care patients. We try to exploit the trends in the physiological signals such as Heart Rate, Respiratory Rate, Systolic Blood Pressure and Oxygen saturation levels in the blood using signal processing aspects of a frame-based approach of expanding signals using a nonorthogonal basis derived from the data. We investigate the significance of the trends in a computerised prediction system. The results are compared with clinical observations of predictability. We will conclude by investigating whether the prediction capability of the system could be exploited to prevent future unplanned extubations. © 2014 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we use the quantum Jensen-Shannon divergence as a means to establish the similarity between a pair of graphs and to develop a novel graph kernel. In quantum theory, the quantum Jensen-Shannon divergence is defined as a distance measure between quantum states. In order to compute the quantum Jensen-Shannon divergence between a pair of graphs, we first need to associate a density operator with each of them. Hence, we decide to simulate the evolution of a continuous-time quantum walk on each graph and we propose a way to associate a suitable quantum state with it. With the density operator of this quantum state to hand, the graph kernel is defined as a function of the quantum Jensen-Shannon divergence between the graph density operators. We evaluate the performance of our kernel on several standard graph datasets from bioinformatics. We use the Principle Component Analysis (PCA) on the kernel matrix to embed the graphs into a feature space for classification. The experimental results demonstrate the effectiveness of the proposed approach. © 2013 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sentiment classification over Twitter is usually affected by the noisy nature (abbreviations, irregular forms) of tweets data. A popular procedure to reduce the noise of textual data is to remove stopwords by using pre-compiled stopword lists or more sophisticated methods for dynamic stopword identification. However, the effectiveness of removing stopwords in the context of Twitter sentiment classification has been debated in the last few years. In this paper we investigate whether removing stopwords helps or hampers the effectiveness of Twitter sentiment classification methods. To this end, we apply six different stopword identification methods to Twitter data from six different datasets and observe how removing stopwords affects two well-known supervised sentiment classification methods. We assess the impact of removing stopwords by observing fluctuations on the level of data sparsity, the size of the classifier's feature space and its classification performance. Our results show that using pre-compiled lists of stopwords negatively impacts the performance of Twitter sentiment classification approaches. On the other hand, the dynamic generation of stopword lists, by removing those infrequent terms appearing only once in the corpus, appears to be the optimal method to maintaining a high classification performance while reducing the data sparsity and substantially shrinking the feature space

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation introduces an integrated algorithm for a new application dedicated at discriminating between electrodes leading to a seizure onset and those that do not, using interictal subdural EEG data. The significance of this study is in determining among all of these channels, all containing interictal spikes, why some electrodes eventually lead to seizure while others do not. A first finding in the development process of the algorithm is that these interictal spikes had to be asynchronous and should be located in different regions of the brain, before any consequential interpretations of EEG behavioral patterns are possible. A singular merit of the proposed approach is that even when the EEG data is randomly selected (independent of the onset of seizure), we are able to classify those channels that lead to seizure from those that do not. It is also revealed that the region of ictal activity does not necessarily evolve from the tissue located at the channels that present interictal activity, as commonly believed.^ The study is also significant in terms of correlating clinical features of EEG with the patient's source of ictal activity, which is coming from a specific subset of channels that present interictal activity. The contributions of this dissertation emanate from (a) the choice made on the discriminating parameters used in the implementation, (b) the unique feature space that was used to optimize the delineation process of these two type of electrodes, (c) the development of back-propagation neural network that automated the decision making process, and (d) the establishment of mathematical functions that elicited the reasons for this delineation process. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flow Cytometry analyzers have become trusted companions due to their ability to perform fast and accurate analyses of human blood. The aim of these analyses is to determine the possible existence of abnormalities in the blood that have been correlated with serious disease states, such as infectious mononucleosis, leukemia, and various cancers. Though these analyzers provide important feedback, it is always desired to improve the accuracy of the results. This is evidenced by the occurrences of misclassifications reported by some users of these devices. It is advantageous to provide a pattern interpretation framework that is able to provide better classification ability than is currently available. Toward this end, the purpose of this dissertation was to establish a feature extraction and pattern classification framework capable of providing improved accuracy for detecting specific hematological abnormalities in flow cytometric blood data. ^ This involved extracting a unique and powerful set of shift-invariant statistical features from the multi-dimensional flow cytometry data and then using these features as inputs to a pattern classification engine composed of an artificial neural network (ANN). The contribution of this method consisted of developing a descriptor matrix that can be used to reliably assess if a donor’s blood pattern exhibits a clinically abnormal level of variant lymphocytes, which are blood cells that are potentially indicative of disorders such as leukemia and infectious mononucleosis. ^ This study showed that the set of shift-and-rotation-invariant statistical features extracted from the eigensystem of the flow cytometric data pattern performs better than other commonly-used features in this type of disease detection, exhibiting an accuracy of 80.7%, a sensitivity of 72.3%, and a specificity of 89.2%. This performance represents a major improvement for this type of hematological classifier, which has historically been plagued by poor performance, with accuracies as low as 60% in some cases. This research ultimately shows that an improved feature space was developed that can deliver improved performance for the detection of variant lymphocytes in human blood, thus providing significant utility in the realm of suspect flagging algorithms for the detection of blood-related diseases.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.