880 resultados para Fault proness
Resumo:
Introduction: Research that has focused on the ability of self-report assessment tools to predict crash outcomes has proven to be mixed. As a result, researchers are now beginning to explore whether examining culpability of crash involvement can subsequently improve this predictive efficacy. This study reports on the application of the Manchester Driver Behaviour Questionnaire (DBQ) to predict crash involvement among a sample of general Queensland motorists, and in particular, whether including a crash culpability variable improves predictive outcomes. Surveys were completed by 249 general motorists on-line or via a pen-and-paper format. Results: Consistent with previous research, a factor analysis revealed a three factor solution for the DBQ accounting for 40.5% of the overall variance. However, multivariate analysis using the DBQ revealed little predictive ability of the tool to predict crash involvement. Rather, exposure to the road was found to be predictive of crashes. An analysis into culpability revealed 88 participants reported being “at fault” for their most recent crash. Corresponding between and multi-variate analyses that included the culpability variable did not result in an improvement in identifying those involved in crashes. Conclusions: While preliminary, the results suggest that including crash culpability may not necessarily improve predictive outcomes in self-report methodologies, although it is noted the current small sample size may also have had a deleterious effect on this endeavour. This paper also outlines the need for future research (which also includes official crash and offence outcomes) to better understand the actual contribution of self-report assessment tools, and culpability variables, to understanding and improving road safety.
Resumo:
This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.
Resumo:
Bearing faults are the most common cause of wind turbine failures. Unavailability and maintenance cost of wind turbines are becoming critically important, with their fast growing in electric networks. Early fault detection can reduce outage time and costs. This paper proposes Anomaly Detection (AD) machine learning algorithms for fault diagnosis of wind turbine bearings. The application of this method on a real data set was conducted and is presented in this paper. For validation and comparison purposes, a set of baseline results are produced using the popular one-class SVM methods to examine the ability of the proposed technique in detecting incipient faults.
Resumo:
A modularized battery system with Double Star Chopper Cell (DSCC) based modular multilevel converter is proposed for a battery operated electric vehicle (EV). A design concept for the modularized battery micro-packs for DSCC is described. Multidimensional pulse width modulation (MD-PWM) with integrated inter-module SoC balancing and fault tolerant control is proposed and explained. The DSCC can be operated either as an inverter to drive the EV motor or as a synchronous rectifier connected to external three phase power supply equipment for charging the battery micro-packs. The methods of operation as inverter and synchronous rectifier with integrated inter-module SoC balancing and fault tolerant control are discussed. The proposed system operation as inverter and synchronous rectifier are verified through simulations and the results are presented.
Resumo:
Wind energy, being the fastest growing renewable energy source in the present world, requires a large number of wind turbines to transform wind energy into electricity. One factor driving the cost of this energy is the reliable operation of these turbines. Therefore, it is a growing requirement within the wind farm community, to monitor the operation of the wind turbines on a continuous basis so that a possible fault can be detected ahead of time. As the wind turbine operates in an environment of constantly changing wind speed, it is a challenging task to design a fault detection technique which can accommodate the stochastic operational behavior of the turbines. Addressing this issue, this paper proposes a novel fault detection criterion which is robust against operational uncertainty, as well as having the ability to quantify severity level specifically of the drivetrain abnormality within an operating wind turbine. A benchmark model of wind turbine has been utilized to simulate drivetrain fault condition and effectiveness of the proposed technique has been tested accordingly. From the simulation result it can be concluded that the proposed criterion exhibits consistent performance for drivetrain faults for varying wind speed and has linear relationship with the fault severity level.
Resumo:
In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.
Resumo:
Rolling-element bearing failures are the most frequent problems in rotating machinery, which can be catastrophic and cause major downtime. Hence, providing advance failure warning and precise fault detection in such components are pivotal and cost-effective. The vast majority of past research has focused on signal processing and spectral analysis for fault diagnostics in rotating components. In this study, a data mining approach using a machine learning technique called anomaly detection (AD) is presented. This method employs classification techniques to discriminate between defect examples. Two features, kurtosis and Non-Gaussianity Score (NGS), are extracted to develop anomaly detection algorithms. The performance of the developed algorithms was examined through real data from a test to failure bearing. Finally, the application of anomaly detection is compared with one of the popular methods called Support Vector Machine (SVM) to investigate the sensitivity and accuracy of this approach and its ability to detect the anomalies in early stages.
Resumo:
We analyse the fault-tolerant parameters and topological properties of a hierarchical network of hypercubes. We take a close look at the Extended Hypercube (EH) and the Hyperweave (HW) architectures and also compare them with other popular architectures. These two architectures have low diameter and constant degree of connectivity making it possible to expand these networks without affecting the existing configuration. A scheme for incrementally expanding this network is also presented. We also look at the performance of the ASCEND/DESCEND class of algorithms on these architectures.
Resumo:
A vessel stabilizer control system includes a sensor fault detection means which senses the availability of sensing signals from a gyrostabilizer precession motion sensor and a vessel roll motion sensor. The control system controls the action of a gyro-actuator which is mechanically coupled to a gyrostabilizer. The benefit of employing fault sensing of the sensors providing the process control variables is that the sensed number of available process control variables (or sensors) can be used to activate a tiered system of control modes. Each tiered control mode is designed to utilize the available process control variables to ensure safe and effective operation of the gyrostabilizer that is tolerant of sensor faults and loss of power supply. A control mode selector is provided for selecting the appropriate control mode based on the number of available process control variables.
Resumo:
Multiprocessor systems which afford a high degree of parallelism are used in a variety of applications. The extremely stringent reliability requirement has made the provision of fault-tolerance an important aspect in the design of such systems. This paper presents a review of the various approaches towards tolerating hardware faults in multiprocessor systems. It. emphasizes the basic concepts of fault tolerant design and the various problems to be taken care of by the designer. An indepth survey of the various models, techniques and methods for fault diagnosis is given. Further, we consider the strategies for fault-tolerance in specialized multiprocessor architectures which have the ability of dynamic reconfiguration and are suited to VLSI implementation. An analysis of the state-óf-the-art is given which points out the major aspects of fault-tolerance in such architectures.
Resumo:
The fault-tolerant multiprocessor (ftmp) is a bus-based multiprocessor architecture with real-time and fault- tolerance features and is used in critical aerospace applications. A preliminary performance evaluation is of crucial importance in the design of such systems. In this paper, we review stochastic Petri nets (spn) and developspn-based performance models forftmp. These performance models enable efficient computation of important performance measures such as processing power, bus contention, bus utilization, and waiting times.
Resumo:
In multi-vehicle motorcycle crashes, the motorcycle rider is less likely to be at-fault but more commonly severely injured than the other road user. Therefore, not surprisingly, crashes in which motorcycle riders are at-fault and particularly the injuries to the other road users in these crashes have received little research attention. This paper aims to address this gap in the literature by investigating the factors influencing the severity of injury to other road users in motorcyclist-at-fault crashes. Five years of data from Queensland, Australia, were obtained from a database of claims against the compulsory third party (CTP) injury insurance of the at-fault motorcyclists. Analysis of the data using an ordered probit model shows higher injury severity for crashes involving young (under 25) and older (60+) at-fault motorcyclists. Among the not at-fault road users, the young, old, and males were found to be more severely injured than others. Injuries to vehicle occupants were less severe than those to pillions. Crashes that occurred between vehicles traveling in opposite directions resulted in more severe injuries than those involving vehicles traveling in the same direction. While most existing studies have analyzed police reported crash data, this study used CTP insurance data. Comparison of results indicates the potential of using CTP insurance data as an alternative to police reported crash data for gaining a better understanding of risk factors for motorcycle crashes and injury severity.