893 resultados para Fatigue Crack Nucleation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We obtain the Paris law of fatigue crack propagation in a fuse network model where the accumulated damage in each resistor increases with time as a power law of the local current amplitude. When a resistor reaches its fatigue threshold, it burns irreversibly. Over time, this drives cracks to grow until the system is fractured into two parts. We study the relation between the macroscopic exponent of the crack-growth rate -entering the phenomenological Paris law-and the microscopic damage accumulation exponent, gamma, under the influence of disorder. The way the jumps of the growing crack, Delta a, and the waiting time between successive breaks, Delta t, depend on the type of material, via gamma, are also investigated. We find that the averages of these quantities, <Delta a > and <Delta t >/< t(r)>, scale as power laws of the crack length a, <Delta a > proportional to a(alpha) and <Delta t >/< t(r)> proportional to a(-beta), where < t(r)> is the average rupture time. Strikingly, our results show, for small values of gamma, a decrease in the exponent of the Paris law in comparison with the homogeneous case, leading to an increase in the lifetime of breaking materials. For the particular case of gamma = 0, when fatigue is exclusively ruled by disorder, an analytical treatment confirms the results obtained by simulation. Copyright (C) EPLA, 2012

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Detection of a fatigue crack in a welded frame structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame with hollow section chords and branch members. The fatigue crack was created by a special reciprocating mechanism that generates cyclic stress on a beam member of the structure. The methodology of coupled response measurements is first demonstrated on a single hollow section beam by analytical simulation and experimental validation. The issues of using this approach for fatigue crack detection in real structures are then examined. Finally, the experimental results of the frame under different scenarioes are presented. The existence of the crack is clearly observable from the FRF plots. It is suggested that this approach offers the potential to detect cracks in welded frame structures and is a useful tool for routine maintenance work and health assessment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The introduction of single crystal casting techniques has led to the development of existing nickel-base superalloys to produce materials with optimum mechanical properties in the single crystal condition. As single crystals are known to be anisotropic, a study is needed to determine the general mechanical properties of these materials, and determine the effects of crystal orientation upon them. A study has been carried out to identify the effect of orientation and temperature on the creep and fatigue properties of a development single crystal superalloy, SRR 99. Creep testing and crystal rotation experiments have been made on SRR 99 and an earlier development alloy, SRR 9. Fatigue experiments at elevated temperatures have been carried out on both notched and un-notched specimens of alloy SRR 99. To aid in this analysis, several analytical techniques have been employed including Laue x-ray orientation analysis, measurement of strain by photographic methods and microstructural examination. Crystal rotation experiments have indicated that shear of 1 precipitates by lbrace111rbrace< 112> slip systems is operative during primary creep deformation at temperatures of 750oC and 850oC. The effect of orientation variation obtained by standard casting practices was not found to be significant. Creep rupture was found to be associated with multiple crack initiation from micropores. Fatigue crack initiation in un-notched specimens was found to be related to microporosity and microstructural defects. Failure was predominantly by crystallographic crack growth on lbrace111rbrace planes. The use of linear elastic fracture mechanics to describe fatigue crack propagation in alloy SRR 99 was found to be acceptable at temperatures up to 850oC. Variation of temperature, frequency and crystal orientation was found to have only moderate effect upon crack propagation rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fatigue crack propagation has been observed for a number of commercial aluminium alloys. Comparable data was obtained for a variety of crack and specimen geometries over a range of crack lengths for a given alloy. Where crack propagation only was of interest the initiation event has been excluded by pre-cracking the specimen using a fin of material adjacent to the crack face. By this method a controlled defect size is introduced in to the specimen. By modification of the D.C. potential drop method it has been shown possible to measure the growth of cracking from 0.12mm by this method. Crack growth from defects greater than 0.6mm have been shown to give conventional crack propagation deduced by principle of similitude. Fatigue fracture surface analysis has been conducted for cracking from both free surfaces and from blunt notches. A `quasi cleavage' feature has been identified and is shown to be prominent when the fatigue stress intensity range is below 10 MNm-3/2.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interfaces in conventional monolithic alloys exert an important influence on fatigue and fracture behavior. In discontinuously reinforced metal matrix composites (MMCs), the role of interface is even more dominant. The interfacial is higher in MMCs and the interfaces are generally of high energy and chemically unstable. This paper reviews the factors which can affect interfacial strength in discontinuously reinforced MMCs, and the ways in which interfacial strength can be controlled. The effects of interfacial strength on fatigue crack propagation and fracture behavior are then illustrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrogen assisted subcritical cleavage of the ferrite matrix occurs during fatigue of a duplex stainless steel in gaseous hydrogen. The ferrite fails by a cyclic cleavage mechanism and fatigue crack growth rates are independent of frequency between 0.1 and 5 Hz. Macroscopic crack growth rates are controlled by the fraction of ferrite grains cleaving along the crack front, which can be related to the maximum stress intensity, Kmax. A superposition model is developed to predict simultaneously the effects of stress intensity range (ΔK) and K ratio (Kmin/Kmax). The effect of Kmax is rationalised by a local cleavage criterion which requires a critical tensile stress, normal to the {001} cleavage plane, acting over a critical distance within an embrittled zone at the crack tip. © 1991.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fatigue behaviour in SiC-particulate-reinforced aluminium alloy composites has been briefly reviewed. The improved fatigue life reported in stress-controlled test results from the higher stiffness of the composites; therefore it is generally inferior to monolithic alloys at a constant strain level. The role of SiC particulate reinforcement has been examined for fatigue crack initiation, short-crack growth and long-crack growth. Crack initiation is observed to occur at matrix-SiC interface in cast composites and either at or near the matrix-SiC interface or at cracked SiC particles in powder metallurgy processed composites depending on particle size and morphology. The da/dN vs ΔK relationship in the composites is characterized by crack growth rates existing within a narrow range of ΔK and this is because of the lower fracture toughness and relatively high threshold values in composites compared with those in monolithic alloys. An enhanced Paris region slope attributed to the monotonic fracture contribution are reported and the extent of this contribution is found to depend on particle size. The effects of the aging condition on crack growth rates and particle size dependence of threshold values are also treated in this paper. © 1991.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the effects of non-metallic particles on fatigue performance and, in particular, their influence on fatigue crack propagation at high ΔK (Kmax) levels. The nature and properties of a number of common non-metallic particles found in Fe- and Al- based alloys are described, and consideration is given to the consequences of mismatch of physical and chemical properties between particle and matrix. Effects of particles on fatigue in conventional alloys are illustrated and compared with the behaviour of Al/SiCp MMC. The problems associated with developing particulate reinforced MMC with adequate fatigue crack growth resistance and toughness for structural applications are discussed. © 1991.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of engineering materials in critical applications necessitates the accurate prediction of component lifetime for inspection and renewal purposes. In fatigue limited situations, it is necessary to be able to predict the growth rates of cracks from initiation at a defect through to final fracture. To this end, fatigue crack growth data are presented for different microstructures of typical nickel base superalloys used in gas turbine engines. Crack growth behaviour throughout the life history of the crack, i.e. from the short crack through to the long crack propagation regime, is described for each microstructural condition and discussed in terms of current theories of fatigue crack propagation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fatigue-crack propagation and threshold behaviour of a C-Mn steel containing boron has been investigated at a range of strength levels suitable for mining chain applications. The heat-treatment variables examined include two austenitizing temperatures (900 degree C and 1250 degree C) and a range of tempering treatments from the as-quenched condition to tempering at 400 degree C. In mining applications the haulage chains undergo a 'calibration' process which has the effect of imposing a tensile prestrain on the chain links before they go into service. Prestrain is shown to reduce threshold values in these steels and this behaviour is related to its effects on the residual stress distribution in the test specimens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Threshold stress intensity values, ranging from ∼6 to 16 MN m −3/2 can be obtained in powder-formed Nimonic AP1 by changing the microstructure. The threshold and low crack growth rate behaviour at room temperature of a number of widely differing API microstructures, with both ‘necklace’ and fully recrystallized grain structures of various sizes and uniform and bimodal γ′-distributions, have been investigated. The results indicate that grain size is an important microstructural parameter which can control threshold behaviour, with the value of threshold stress intensity increasing with increasing grain size, but that the γ′-distribution is also important. In this Ni-base alloy, as in many others, near threshold fatigue crack growth occurs in a crystallographic manner along {111} planes. This is due to the development of a dislocation structure involving persistent slip bands on {111} planes in the plastic zone, caused by the presence of ordered shearable precipitates in the microstructure. However, as the stress intensity range is increased, a striated growth mode takes over. The results presented show that this transition from faceted to striated growth is associated with a sudden increase in crack propagation rate and occurs when the size of the reverse plastic zone at the crack tip becomes equal to the grain size, independent of any other microstructural variables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mechanical fatigue is a failure phenomenon that occurs due to repeated application of mechanical loads. Very High Cycle Fatigue (VHCF) is considered as the domain of fatigue life greater than 10 million load cycles. Increasing numbers of structural components have service life in the VHCF regime, for instance in automotive and high speed train transportation, gas turbine disks, and components of paper production machinery. Safe and reliable operation of these components depends on the knowledge of their VHCF properties. In this thesis both experimental tools and theoretical modelling were utilized to develop better understanding of the VHCF phenomena. In the experimental part, ultrasonic fatigue testing at 20 kHz of cold rolled and hot rolled stainless steel grades was conducted and fatigue strengths in the VHCF regime were obtained. The mechanisms for fatigue crack initiation and short crack growth were investigated using electron microscopes. For the cold rolled stainless steels crack initiation and early growth occurred through the formation of the Fine Granular Area (FGA) observed on the fracture surface and in TEM observations of cross-sections. The crack growth in the FGA seems to control more than 90% of the total fatigue life. For the hot rolled duplex stainless steels fatigue crack initiation occurred due to accumulation of plastic fatigue damage at the external surface, and early crack growth proceeded through a crystallographic growth mechanism. Theoretical modelling of complex cracks involving kinks and branches in an elastic half-plane under static loading was carried out by using the Distributed Dislocation Dipole Technique (DDDT). The technique was implemented for 2D crack problems. Both fully open and partially closed crack cases were analyzed. The main aim of the development of the DDDT was to compute the stress intensity factors. Accuracy of 2% in the computations was attainable compared to the solutions obtained by the Finite Element Method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alpha prime formation leads to material embrittlement and deterioration of corrosion resistance. In the present study, the mechanical and corrosion behavior of super duplex stainless steel UNS S32520 aged at 475 degrees C from 0.5 h to 1,032 h was evaluated using microhardness measurements, Charpy impact tests, electrochemical impedance spectroscopy, and cyclic polarization curves. The sensibility of these tests to the effects of alpha prime phase was investigated. The microhardness test showed a gradual increase in hardness with aging time, whereas the impact tests revealed losses of about 80% in the energy absorption capacity for the material aged for 12 h in comparison with the solution-annealed samples. The most responsive analysis was the impact test, which indirectly revealed the presence of this deleterious phase in samples aged for 0.5 h. The electrochemical impedance spectroscopy and polarization tests were not highly sensitive to the alpha prime phase unless these are present in large amounts in the stainless steel.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report is formatted to independently present four individual investigations related to similar web gap fatigue problems. Multiple steel girder bridges commonly exhibit fatigue cracking due to out-of-plane displacement of the web near the diaphragm connections. This fatigue-prone web gap area is typically located in negative moment regions of the girders where the diaphragm stiffener is not attached to the top flange. In the past, the Iowa Department of Transportation has attempted to stop fatigue crack propagation in these steel girder bridges by drilling holes at the crack tips. Other nondestructive retrofits have been tried; in a particular case on a two-girder bridge with floor beams, angles were bolted between the stiffener and top flange. The bolted angle retrofit has failed in the past and may not be a viable solution for diaphragm bridges. The drilled hole retrofit is often only a temporary solution, so a more permanent and effective retrofit is required. A new field retrofit has been developed that involves loosening the bolts in the connection between the diaphragm and the girders. Research on the retrofit has been initiated; however, no long-term studies of the effects of bolt loosening have been performed. The intent of this research is to study the short-term effects of the bolt loosening retrofit on I-beam and channel diaphragm bridges. The research also addressed the development of a continuous remote monitoring system to investigate the bolt loosening retrofit on an X-type diaphragm bridge over a number of months, ensuring that the measured strain and displacement reductions are not affected by time and continuous traffic loading on the bridge. The testing for the first three investigations is based on instrumentation of web gaps in a negative moment region on Iowa Department of Transportation bridges with I-beam, channel, and X-type diaphragms. One bridge of each type was instrumented with strain gages and deflection transducers. Field tests, using loaded trucks of known weight and configuration, were conducted on the bridges with the bolts in the tight condition and after implementing the bolt loosening retrofit to measure the effects of loosening the diaphragm bolts. Long-term data were also collected on the X-diaphragm bridge by a data acquisition system that collected the data continuously under ambient truck loading. The collected data were retrievable by an off-site modem connection to the remote data acquisition system. The data collection features and ruggedness of this system for remote bridge monitoring make it viable as a pilot system for future monitoring projects in Iowa. Results indicate that loosening the diaphragm bolts reduces strain and out-of-plane displacement in the web gap, and that the reduction is not affected over time by traffic or environmental loading on the bridge. Reducing the strain in the web gap allows the bridge to support more cycles of loading before experiencing fatigue, thus increase the service life of the bridge. Two-girder floor beam bridges may also exhibit fatigue cracking in girder webs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

On yleisesti tiedossa, että väsyttävän kuormituksen alaisena olevat hitsatut rakenteet rikkoutuvat juuri hitsausliitoksista. Täyden tunkeuman hitsausliitoksia sisältävien rakenteiden asiantunteva suunnittelu janykyaikaiset valmistusmenetelmät ovat lähes eliminoineet väsymisvauriot hitsatuissa rakenteissa. Väsymislujuuden parantaminen tiukalla täyden tunkeuman vaatimuksella on kuitenkin epätaloudellinen ratkaisu. Täyden tunkeuman hitsausliitoksille asetettavien laatuvaatimuksien on määriteltävä selkeät tarkastusohjeet ja hylkäämisperusteet. Tämän diplomityön tarkoituksena oli tutkia geometristen muuttujien vaikutusta kuormaa kantavien hitsausliitosten väsymislujuuteen. Huomio kiinnitettiin pääasiassa suunnittelumuuttujiin, joilla on vaikutusta väsymisvaurioiden syntymiseen hitsauksen juuren puolella. Nykyiset määräykset ja standardit, jotka perustuvat kokeellisiin tuloksiin; antavat melko yleisiä ohjeita hitsausliitosten väsymismitoituksesta. Tämän vuoksi muodostettiin kokonaan uudet parametriset yhtälöt sallitun nimellisen jännityksen kynnysarvon vaihteluvälin, ¿¿th, laskemiseksi, jotta vältettäisiin hitsausliitosten juuren puoleiset väsymisvauriot. Lisäksi, jokaiselle liitostyypille laskettiin hitsin juuren puolen väsymisluokat (FAT), joita verrattiin olemassa olevilla mitoitusohjeilla saavutettuihin tuloksiin. Täydentäviksi referensseiksi suoritettiin useita kolmiulotteisia (3D) analyysejä. Julkaistuja kokeellisiin tuloksiin perustuvia tietoja käytettiin apuna hitsausliitosten väsymiskäyttäytymisen ymmärtämiseksi ja materiaalivakioiden määrittämiseksi. Kuormaa kantavien vajaatunkeumaisten hitsausliitosten väsymislujuus määritettiin käyttämällä elementtimenetelmää. Suurimman pääjännityksen kriteeriä hyödynnettiin murtumiskäyttäytymisen ennakoimiseksi. Valitulle hitsatulle materiaalille ja koeolosuhteille murtumiskäyttäytymistä mallinnettiin särön kasvunopeudella da/dN ja jännitysintensiteettikertoimen vaihteluvälillä, 'K. Paris:n yhtälön numeerinen integrointi suoritettiin FRANC2D/L tietokoneohjelmalla. Saatujen tulosten perusteella voidaan laskea FAT tutkittavassa tapauksessa. ¿¿th laskettiin alkusärön jännitysintensiteettikertoimen vaihteluvälin ja kynnysjännitysintensiteettikertoimen, 'Kth, perusteella. ¿Kth arvoa pienemmällä vaihteluvälillä särö ei kasva. Analyyseissäoletuksena oli hitsattu jälkikäsittelemätön liitos, jossa oli valmis alkusärö hitsin juuressa. Analyysien tulokset ovat hyödyllisiä suunnittelijoille, jotka tekevät päätöksiä koskien geometrisiä parametreja, joilla on vaikutusta hitsausliitosten väsymislujuuteen.