900 resultados para Fast spindles
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
Devido a crescente importância dos coccídios intestinais (Cryptosporidium, Isospora e Cyclospora) como parasitos oportunistas, é fundamental para os laboratórios diferenciar morfologicamente estes protozoários; a técnica de Ziehl-Neelsen modificada (ZNm) é amplamente utilizada para este fim; recentemente, foi proposto um novo procedimento, a coloração combinada do ácido tricrômico (Acid-Fast-Trichrome - AFT). O objetivo do presente estudo foi comparar os processos AFT e ZNm para a detecção destes coccídios em amostras fecais de pacientes portadores do vírus VIH. Foram selecionados dois grupos de indivíduos, para inclusão no estudo, segundo a presença (n=60) ou ausência de diarréia (n=60). As amostras de fezes foram coletadas em solução de formalina 10% e os esfregaços fecais preparados i) diretamente das fezes e ii) após concentração prévia a 500xg (10 minutos), foram submetidos aos diferentes processos de coloração. Considerando-se a positividade por técnica (AFT e ZNm), verificou-se a superioridade do procedimento de ZNm (n=19; 100% dos casos positivos) sobre o de AFT (n=8; 42,1%). Ambos possibilitaram a identificação dos 101 casos verdadeiramente negativos. Coccidiose intestinal foi mais frequente entre os pacientes que apresentaram diarréia (26,6%) em comparação à positividade observada entre os indíviduos assintomáticos (5%) sendo que C. cayetanensis não foi detectada em ambos os grupos. Foi de nosso interesse avaliar a aplicabilidade da técnica AFT para a coloração deste protozoário. Devido à sensibilidade e especificidade obtida neste estudo (100%), conclui-se que o método de ZNm continua sendo o mais indicado para o diagnóstico da criptosporidiose e isosporose, principalmente quando associado ao procedimento de centrífugo-concentração (500xg, 10 minutos). Embora a coloração AFT tenha baixo custo, faz-se necessário o seu aperfeiçoamento pois este procedimento permite o diagnóstico simultâneo dos coccídios intestinais (C. parvum, I. belli e C. cayetanensis) e dos microsporídios.
Resumo:
Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation
Resumo:
Zara was founded in 1975 by Amancio Ortega Gaona, soon becoming the largest and most successful chain of the Galician group Inditex (Industria de Diseño Textil) and a pioneer of the rising fashion category of Fast Fashion. Its innovative vertically-integrated strategies, combined with its emphasis on quality and demand-based offer have shaped the world of fashion and brought forth many questions on its future sustainability and growth. Zara has always relied on its store network for advertising its product offer; allowing its garments to “speak for themselves”. With the continued pressure felt in the industry, management has pressed some concerns about future company growth and creative, innovating solutions must be implemented to guarantee Zara’s future growth. The case-study narrative focuses on these issues and leaves readers with an open question regarding what decision to implement.
Resumo:
This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
The current study describes the in vitro phosphorylation of a human hair keratin, using protein kinase for the first time. Phosphorylation of keratin was demonstrated by 31P NMR (Nuclear Magnetic Resonance) and Diffuse Reflectance Infrared Fourier Transform (DRIFT) techniques. Phosphorylation induced a 2.5 fold increase of adsorption capacity in the first 10 minutes for cationic moiety like Methylene Blue (MB). Thorough description of MB adsorption process was performed by several isothermal models. Reconstructed fluorescent microscopy images depict distinct amounts of dye bound to the differently treated hair. The results of this work suggest that the enzymatic phosphorylation of keratins might have significant implications in hair shampooing and conditioning, where short application times of cationic components are of prime importance.
Resumo:
The relaxivity displayed by Gd3+ chelates immobilized onto gold nanoparticles is the result of complex interplay between nanoparticle size, water exchange rate and chelate structure. In this work we study the effect of the length of -thioalkyl linkers, anchoring fast water exchanging Gd3+ chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd3+ chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM-1s-1 (30 MHz, 25 ºC) were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles is determined mainly by size. Small nanoparticles (HD= 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD= 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggests that functionalized gold nanoparticles hold great potential for further investigation as MRI Contrast Agents. This study contributes to understand the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd3+ complexes. It is a relevant contribution towards “design rules” for nanostructures functionalized with Gd3+ chelates as Contrast Agents for MRI and multimodal imaging.
Resumo:
A highly robust hydrogel device made from a single biopolymer formulation is reported. Owing to the presence of covalent and non-covalent crosslinks, these engineered systems were able to (i) sustain a compressive strength of ca. 20 MPa, (ii) quickly recover upon unloading, and (iii) encapsulate cells with high viability rates.
Resumo:
Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.
Resumo:
How long does it take to learn another language? How many words do you need to learn? Are languages within the reach of everybody? Which teachers would you choose and which teachers should you avoid? These are some of the questions you ask yourself when you start learning a new language.The Word Brain provides the answers. If you have learned foreign languages in the past, consider reading it. If you or your children need to learn languages in the future, you must read it. What you will discover in two hours will change for ever the way you see languages and language learning. The principles of The Word Brain are timeless. Our children’s grandchildren will follow them when they discover the people of our planet.
Resumo:
Emotion, audition, event-related potentials, MMN, multidimensional scaling, timbre, perception
Resumo:
Several factors, such as hunting and the pet trade, are responsible for the worldwide decline of wildlife populations. In addition, fatal collisions with vehicles on highways have also taken one of the largest tolls. This study aimed to quantify the richness and abundance of vertebrate roadkill along highway MS-080 in Mato Grosso do Sul, Central-West Brazil. We compare the amount of roadkill to the distance between cities, moon phases and the flow of vehicles on the highway. Samples were collected weekly between March and September 2011, totaling 257 individuals, belonging to 32 families and 52 species, resulting in an index of 0.13 individuals hit/km. Birds were the most frequently hit taxa, followed by mammals. The most affected species was Cariama cristata (Cariamidae), followed by Cerdocyon thous (Canidae). The sections of highway closest to cities had the highest number of individual animals killed. Our observations indicate that the density of the vegetation next to the highway positively influences the amount of roadkill.
Resumo:
Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.