888 resultados para Face recognition makeup riconoscimento volto immagini trucco alterazione


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a novel pattern recognition scheme, global harmonic subspace analysis (GHSA), is developed for face recognition. In the proposed scheme, global harmonic features are extracted at the semantic scale to capture the 2-D semantic spatial structures of a face image. Laplacian Eigenmap is applied to discriminate faces in their global harmonic subspace. Experimental results on the Yale and PIE face databases show that the proposed GHSA scheme achieves an improvement in face recognition accuracy when compared with conventional subspace approaches, and a further investigation shows that the proposed GHSA scheme has impressive robustness to noise.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates face recognition with partial occlusion, illumination variation and their combination, assuming no prior information about the mismatch, and limited training data for each person. The authors extend their previous posterior union model (PUM) to give a new method capable of dealing with all these problems. PUM is an approach for selecting the optimal local image features for recognition to improve robustness to partial occlusion. The extension is in two stages. First, authors extend PUM from a probability-based formulation to a similarity-based formulation, so that it operates with as little as one single training sample to offer robustness to partial occlusion. Second, they extend this new formulation to make it robust to illumination variation, and to combined illumination variation and partial occlusion, by a novel combination of multicondition relighting and optimal feature selection. To evaluate the new methods, a number of databases with various simulated and realistic occlusion/illumination mismatches have been used. The results have demonstrated the improved robustness of the new methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gabor features have been recognized as one of the most successful face representations. Encouraged by the results given by this approach, other kind of facial representations based on Steerable Gaussian first order kernels and Harris corner detector are proposed in this paper. In order to reduce the high dimensional feature space, PCA and LDA techniques are employed. Once the features have been extracted, AdaBoost learning algorithm is used to select and combine the most representative features. The experimental results on XM2VTS database show an encouraging recognition rate, showing an important improvement with respect to face descriptors only based on Gabor filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter describes an experimental system for the recognition of human faces from surveillance video. In surveillance applications, the system must be robust to changes in illumination, scale, pose and expression. The system must also be able to perform detection and recognition rapidly in real time. Our system detects faces using the Viola-Jones face detector, then extracts local features to build a shape-based feature vector. The feature vector is constructed from ratios of lengths and differences in tangents of angles, so as to be robust to changes in scale and rotations in-plane and out-of-plane. Consideration was given to improving the performance and accuracy of both the detection and recognition steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work suggests that the human ear varies significantly between different subjects and can be used for identification. In principle, therefore, using ears in addition to the face within a recognition system could improve accuracy and robustness, particularly for non-frontal views. The paper describes work that investigates this hypothesis using an approach based on the construction of a 3D morphable model of the head and ear. One issue with creating a model that includes the ear is that existing training datasets contain noise and partial occlusion. Rather than exclude these regions manually, a classifier has been developed which automates this process. When combined with a robust registration algorithm the resulting system enables full head morphable models to be constructed efficiently using less constrained datasets. The algorithm has been evaluated using registration consistency, model coverage and minimalism metrics, which together demonstrate the accuracy of the approach. To make it easier to build on this work, the source code has been made available online.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we introduce a novel approach to face recognition which simultaneously tackles three combined challenges: 1) uneven illumination; 2) partial occlusion; and 3) limited training data. The new approach performs lighting normalization, occlusion de-emphasis and finally face recognition, based on finding the largest matching area (LMA) at each point on the face, as opposed to traditional fixed-size local area-based approaches. Robustness is achieved with novel approaches for feature extraction, LMA-based face image comparison and unseen data modeling. On the extended YaleB and AR face databases for face identification, our method using only a single training image per person, outperforms other methods using a single training image, and matches or exceeds methods which require multiple training images. On the labeled faces in the wild face verification database, our method outperforms comparable unsupervised methods. We also show that the new method performs competitively even when the training images are corrupted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the rapid development of internet-of-things (IoT), face scrambling has been proposed for privacy protection during IoT-targeted image/video distribution. Consequently in these IoT applications, biometric verification needs to be carried out in the scrambled domain, presenting significant challenges in face recognition. Since face models become chaotic signals after scrambling/encryption, a typical solution is to utilize traditional data-driven face recognition algorithms. While chaotic pattern recognition is still a challenging task, in this paper we propose a new ensemble approach – Many-Kernel Random Discriminant Analysis (MK-RDA) to discover discriminative patterns from chaotic signals. We also incorporate a salience-aware strategy into the proposed ensemble method to handle chaotic facial patterns in the scrambled domain, where random selections of features are made on semantic components via salience modelling. In our experiments, the proposed MK-RDA was tested rigorously on three human face datasets: the ORL face dataset, the PIE face dataset and the PUBFIG wild face dataset. The experimental results successfully demonstrate that the proposed scheme can effectively handle chaotic signals and significantly improve the recognition accuracy, making our method a promising candidate for secure biometric verification in emerging IoT applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagnosis of developmental or congenital prosopagnosia (CP) involves self-report of everyday face recognition difficulties, which are corroborated with poor performance on behavioural tests. This approach requires accurate self-evaluation. We examine the extent to which typical adults have insight into their face recognition abilities across four studies involving nearly 300 participants. The studies used five tests of face recognition ability: two that tap into the ability to learn and recognise previously unfamiliar faces (the Cambridge Face Memory Test, CFMT, Duchaine & Nakayama, 2006 and a newly devised test based on the CFMT but where the study phases involve watching short movies rather than viewing static faces – the CFMT-Films) and three that tap face matching (Benton Facial Recognition Test, BFRT, Benton, Sivan, Hamsher, Varney, & Spreen, 1983; and two recently devised sequential face matching tests). Self-reported ability was measured with the 15-item Kennerknecht et al. (2008) questionnaire; two single-item questions assessing face recognition ability; and a new 77-item meta-cognition questionnaire). Overall, we find that adults with typical face recognition abilities have only modest insight into their ability to recognise faces on behavioural tests. In a fifth study, we assess self-reported face recognition ability in people with CP and find that some people who expect to perform poorly on behavioural tests of face recognition do indeed perform poorly. However, it is not yet clear whether individuals within this group of poor performers have greater levels of insight (i.e., into their degree of impairment) than those with more typical levels of performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic routing and saliency maps for Focus-of-Attention. All these combined allow us to segregate faces. Events of different facial views are stored in memory and combined in order to identify the view and recognise the face including facial expression. In this paper we show that with five 2D views and their cortical representations it is possible to determine the left-right and frontal-lateral-profile views and to achieve view-invariant recognition of 3D faces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Face recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to recognize a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adults' expert face recognition is limited to the kinds of faces they encounter on a daily basis (typically upright human faces of the same race). Adults process own-race faces holistically (Le., as a gestalt) and are exquisitely sensitive to small differences among faces in the spacing of features, the shape of individual features and the outline or contour of the face (Maurer, Le Grand, & Mondloch, 2002), however this expertise does not seem to extend to faces from other races. The goal of the current study was to investigate the extent to which the mechanisms that underlie expert face processing of own-race faces extend to other-race faces. Participants from rural Pennsylvania that had minimal exposure to other-race faces were tested on a battery of tasks. They were tested on a memory task, two measures of holistic processing (the composite task and the part/whole task), two measures of spatial and featural processing (the JanelLing task and the scrambledlblurred faces task) and a test of contour processing (JanelLing task) for both own-and other-race faces. No study to date has tested the same participants on all of these tasks. Participants had minimal experience with other-race faces; they had no Chinese family members, friends or had ever traveled to an Asian country. Results from the memory task did not reveal an other-race effect. In the present study, participants also demonstrated holistic processing of both own- and other-race faces on both the composite task and the part/whole task. These findings contradict previous findings that Caucasian adults process own-race faces more holistically than other-race faces. However participants did demonstrate an own-race advantage for processing the spacing among features, consistent with two recent studies that used different manipulations of spacing cues (Hayward et al. 2007; Rhodes et al. 2006). They also demonstrated an other-race effect for the processing of individual features for the Jane/Ling task (a direct measure of featural processing) consistent with previous findings (Rhodes, Hayward, & Winkler, 2006), but not for the scrambled faces task (an indirect measure offeatural processing). There was no own-race advantage for contour processing. Thus, these results lead to the conclusion that individuals may show less sensitivity to the appearance of individual features and the spacing among them in other-race faces, despite processing other-race faces holistically.