997 resultados para FREQUENCY OSCILLATORY VENTILATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual attention depends on bottom-up sensory activation and top-down attentional guidance. Although aging is known to affect sensory processing, its impact on the top-down control of attention remains a matter of debate. We investigated age-related modulations of brain oscillatory activity during visual attention using a variant of the attention network test (ANT) in 20 young and 28 elderly adults. We examined the EEG oscillatory responses to warning and target signals, and explored the correlates of temporal and spatial orienting as well as conflict resolution at target presentation. Time-frequency analysis was performed between 4 and 30Hz, and the relationship between behavioral and brain oscillatory responses was analyzed. Whereas temporal cueing and conflict had similar reaction time effects in both age groups, spatial cueing was more beneficial to older than younger subjects. In the absence of cue, posterior alpha activation was drastically reduced in older adults, pointing to an age-related decline in anticipatory attention. Following both cues and targets, older adults displayed pronounced motor-related activation in the low beta frequency range at the expense of attention-related posterior alpha activation prominent in younger adults. These findings support the recruitment of alternative motor-related circuits in the elderly, in line with the dedifferentiation hypothesis. Furthermore, older adults showed reduced midparietal alpha inhibition induced by temporal orienting as well as decreased posterior alpha activation associated with both spatial orienting and conflict resolution. Altogether, the results are consistent with an overall reduction of task-related alpha activity in the elderly, and provide functional evidence that younger and older adults engage distinct brain circuits at different oscillatory frequencies during attentional functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To test a method that allows automatic set-up of the ventilator controls at the onset of ventilation. DESIGN: Prospective randomized crossover study. SETTING: ICUs in one adult and one children's hospital in Switzerland. PATIENTS: Thirty intubated stable, critically ill patients (20 adults and 10 children). INTERVENTIONS: The patients were ventilated during two 20-min periods using a modified Hamilton AMADEUS ventilator. During the control period the ventilator settings were chosen immediately prior to the study. During the other period individual settings were automatically determined by the ventilatior (AutoInit). MEASUREMENTS AND RESULTS: Pressure, flow, and instantaneous CO2 concentration were measured at the airway opening. From these measurements, series dead space (V(DS)), expiratory time constant (RC), tidal volume (VT, total respiratory frequency (f(tot), minute ventilation (MV), and maximal and mean airway pressure (Paw, max and Paw, mean) were calculated. Arterial blood gases were analyzed at the end of each period. Paw, max was significantly less with the AutoInit ventilator settings while f(tot) was significantly greater (P < 0.05). The other values were not statistically significant. CONCLUSIONS: The AutoInit ventilator settings, which were automatically derived, were acceptable for all patients for a period of 20 min and were not found to be inferior to the control ventilator settings. This makes the AutoInit method potentially useful as an automatic start-up procedure for mechanical ventilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selection of action may rely on external guidance or be motivated internally, engaging partially distinct cerebral networks. With age, there is an increased allocation of sensorimotor processing resources, accompanied by a reduced differentiation between the two networks of action selection. The present study examines the age effects on the motor-related oscillatory patterns related to the preparation of externally and internally guided movements. Thirty-two older and 30 younger adults underwent three delayed motor tasks with S1 as preparatory and S2 as imperative cue: Full, laterality instructed by S1 (external guidance); Free, laterality freely selected (internal guidance); None, laterality instructed by S2 (no preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Motor-Related Amplitude Asymmetries (MRAA), indexing the lateralization of oscillatory activities, were analyzed within the S1-S2 interval in the mu (9-12 Hz) and low beta (15-20 Hz) motor-related frequency bands. Reaction times to S2 were slower in older than younger subjects, and slower in the Free than in the Full condition in older subjects only. In the Full condition, there were significant mu MRAA in both age groups, and significant low beta MRAA only in older adults. The Free condition was associated with large mu MRAA in younger adults and limited low beta MRAA in older adults. In younger subjects, the lateralization of mu activity in both Full and Free conditions indicated effective external and internal motor preparation. In older subjects, external motor preparation was associated with lateralization of low beta in addition with mu activity, compatible with an increase of motor-related resources. In contrast, absence of mu and limited low beta lateralization in internal motor preparation was concomitant with reaction time slowing and suggested less efficient cerebral processes subtending free movement selection in older adults, indicating reduced capacity for internally driven action with age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the feasibility and effects of non-invasive pressure support ventilation (NIV) on the breathing pattern in infants developing respiratory failure after extubation. DESIGN: Prospective pilot clinical study; each patient served as their own control. SETTING: A nine-bed paediatric intensive care unit of a tertiary university hospital. PATIENTS: Six patients (median age 5 months, range 0.5-7 months; median weight 4.2 kg, range 3.8-5.1 kg) who developed respiratory failure after extubation. INTERVENTIONS: After a period of spontaneous breathing (SB), children who developed respiratory failure were treated with NIV. MEASUREMENTS AND RESULTS: Measurements included clinical dyspnoea score (DS), blood gases and oesophageal pressure recordings, which were analysed for respiratory rate (RR), oesophageal inspiratory pressure swing (dPes) and oesophageal pressure-time product (PTPes). All data were collected during both periods (SB and NIV). When comparing NIV with SB, DS was reduced by 44% (P < 0.001), RR by 32% (P < 0.001), dPes by 45% (P < 0.01) and PTPes by 57% (P < 0.001). A non-significant trend for decrease in PaCO(2) was observed. CONCLUSION: In these infants, non-invasive pressure support ventilation with turbine flow generator induced a reduction of breathing frequency, dPes and PTPes, indicating reduced load of the inspiratory muscles. NIV can be used with some benefits in infants with respiratory failure after extubation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Slight differences in physiological responses and nitric oxide (NO) have been reported at rest between hypobaric hypoxia (HH) and normobaric hypoxia (NH) during short exposure.Our study reports NO and oxidative stress at rest and physiological responses during moderate exercise in HH versus NH. METHODS: Ten subjects were randomly exposed for 24 h to HH (3000 m; FIO2, 20.9%; BP, 530 ± 6 mm Hg) or to NH (FIO2, 14.7%; BP, 720 ± 1 mm Hg). Before and every 8 h during the hypoxic exposures, pulse oxygen saturation (SpO2), HR, and gas exchanges were measured during a 6-min submaximal cycling exercise. At rest, the partial pressure of exhaled NO, blood nitrate and nitrite (NOx), plasma levels of oxidative stress, and pH levels were additionally measured. RESULTS: During exercise, minute ventilation was lower in HH compared with NH (-13% after 8 h, P < 0.05). End-tidal CO2 pressure was lower (P < 0.01) than PRE both in HH and NH but decreased less in HH than that in NH (-25% vs -37%, P < 0.05).At rest, exhaled NO and NOx decreased in HH (-46% and -36% after 24 h, respectively, P < 0.05) whereas stable in NH. By contrast, oxidative stress was higher in HH than that in NH after 24 h (P < 0.05). The plasma pH level was stable in HH but increased in NH (P < 0.01). When compared with prenormoxic values, SpO2, HR, oxygen consumption, breathing frequency, and end-tidal O2 pressure showed similar changes in HH and NH. CONCLUSION: Lower ventilatory responses to a similar hypoxic stimulus during rest and exercise in HH versus NH were sustained for 24 h and associated with lower plasma pH level, exaggerated oxidative stress, and impaired NO bioavailability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mismatch negativity is an electrophysiological marker of auditory change detection in the event-related brain potential and has been proposed to reflect an automatic comparison process between an incoming stimulus and the representation of prior items in a sequence. There is evidence for two main functional subcomponents comprising the MMN, generated by temporal and frontal brain areas, respectively. Using data obtained in an MMN paradigm, we performed time-frequency analysis to reveal the changes in oscillatory neural activity in the theta band. The results suggest that the frontal component of the MMN is brought about by an increase in theta power for the deviant trials and, possibly, by an additional contribution of theta phase alignment. By contrast, the temporal component of the MMN, best seen in recordings from mastoid electrodes, is generated by phase resetting of theta rhythm with no concomitant power modulation. Thus, frontal and temporal MMN components do not only differ with regard to their functional significance but also appear to be generated by distinct neurophysiological mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic blood flow (Q) was measured by echodopplercardiography in 5 normal young adult males during apnea, eupnea and tachypnea. Measurements were made in a recumbent posture at 3-min intervals. Tachypnea was attained by doubling the respiratory frequency at eupnea at a constant tidal volume. An open glottis was maintained during apnea at the resting respiratory level. The Q values were positively correlated with the respiratory frequency, decreasing from eupnea to apnea and increasing from eupnea to tachypnea (P<0.05). These data demonstrate that echodopplercardiography, a better qualified tool for this purpose, confirms the positive and progressive effects of ventilation on systemic blood flow, as suggested by previous studies based on diverse technical approaches

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oscillatory contractile activity is an inherent property of blood vessels. Various cellular mechanisms have been proposed to contribute to oscillatory activity. Mouse small mesenteric arteries display a unique low frequency contractile oscillatory activity (1 cycle every 10-12 min) upon phenylephrine stimulation. Our objective was to identify mechanisms involved in this peculiar oscillatory activity. First-order mesenteric arteries were mounted in tissue baths for isometric force measurement. The oscillatory activity was observed only in vessels with endothelium, but it was not blocked by L-NAME (100 µM) or indomethacin (10 µM), ruling out the participation of nitric oxide and prostacyclin, respectively, in this phenomenon. Oscillatory activity was not observed in vessels contracted with K+ (90 mM) or after stimulation with phenylephrine plus 10 mM K+. Ouabain (1 to 10 µM, an Na+/K+-ATPase inhibitor), but not K+ channel antagonists [tetraethylammonium (100 µM, a nonselective K+ channel blocker), Tram-34 (10 µM, blocker of intermediate conductance K+ channels) or UCL-1684 (0.1 µM, a small conductance K+ channel blocker)], inhibited the oscillatory activity. The contractile activity was also abolished when experiments were performed at 20°C or in K+-free medium. Taken together, these results demonstrate that Na+/K+-ATPase is a potential source of these oscillations. The presence of α-1 and α-2 Na+/K+-ATPase isoforms was confirmed in murine mesenteric arteries by Western blot. Chronic infusion of mice with ouabain did not abolish oscillatory contraction, but up-regulated vascular Na+/K+-ATPase expression and increased blood pressure. Together, these observations suggest that the Na+/K+ pump plays a major role in the oscillatory activity of murine small mesenteric arteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study used three Oculomotor Delayed Response (ODR) tasks to investigate the unique cognitive demands during the delay period. Changes in alpha power were used to index cognitive efforts during the delay period. Continuous EEGs from 25 healthy young adults (18-34 years) were recorded using dense electrode array. The data was analyzed by 6-cycle Morlet wavelet decompositions in the frequency range of 2-30 Hz to create time- frequency decompositions for four midline electrode sites. The 99% confidence intervals using the bootstrapped 20% trimmed mean of the 10 Hz frequency were used to examine the differences among conditions. Compared to two Memory conditions (Match and Non-Match), Control condition yielded significant differences in all frequencies over the entire trial period, suggesting a cognitive state difference. Compared to Match condition, the Non–Match condition had lower alpha activity during the delay period at each midline electrode site reflecting the higher cognitive effort required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the approximation of some highly oscillatory weakly singular surface integrals, arising from boundary integral methods with smooth global basis functions for solving problems of high frequency acoustic scattering by three-dimensional convex obstacles, described globally in spherical coordinates. As the frequency of the incident wave increases, the performance of standard quadrature schemes deteriorates. Naive application of asymptotic schemes also fails due to the weak singularity. We propose here a new scheme based on a combination of an asymptotic approach and exact treatment of singularities in an appropriate coordinate system. For the case of a spherical scatterer we demonstrate via error analysis and numerical results that, provided the observation point is sufficiently far from the shadow boundary, a high level of accuracy can be achieved with a minimal computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we review recent progress on the design, analysis and implementation of numerical-asymptotic boundary integral methods for the computation of frequency-domain acoustic scattering in a homogeneous unbounded medium by a bounded obstacle. The main aim of the methods is to allow computation of scattering at arbitrarily high frequency with finite computational resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we describe recent progress on the design, analysis and implementation of hybrid numerical-asymptotic boundary integral methods for boundary value problems for the Helmholtz equation that model time harmonic acoustic wave scattering in domains exterior to impenetrable obstacles. These hybrid methods combine conventional piecewise polynomial approximations with high-frequency asymptotics to build basis functions suitable for representing the oscillatory solutions. They have the potential to solve scattering problems accurately in a computation time that is (almost) independent of frequency and this has been realized for many model problems. The design and analysis of this class of methods requires new results on the analysis and numerical analysis of highly oscillatory boundary integral operators and on the high-frequency asymptotics of scattering problems. The implementation requires the development of appropriate quadrature rules for highly oscillatory integrals. This article contains a historical account of the development of this currently very active field, a detailed account of recent progress and, in addition, a number of original research results on the design, analysis and implementation of these methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multisensory integration involves bottom-up as well as top-down processes. We investigated the influences of top-down control on the neural responses to multisensory stimulation using EEG recording and time-frequency analyses. Participants were stimulated at the index or thumb of the left hand, using tactile vibrators mounted on a foam cube. Simultaneously they received a visual distractor from a light emitting diode adjacent to the active vibrator (spatially congruent trial) or adjacent to the inactive vibrator (spatially incongruent trial). The task was to respond to the elevation of the tactile stimulus (upper or lower), while ignoring the simultaneous visual distractor. To manipulate top-down control on this multisensory stimulation, the proportion of spatially congruent (vs. incongruent) trials was changed across blocks. Our results reveal that the behavioral cost of responding to incongruent than congruent trials (i.e., the crossmodal congruency effect) was modulated by the proportion of congruent trials. Most importantly, the EEG gamma band response and the gamma-theta coupling were also affected by this modulation of top-down control, whereas the late theta band response related to the congruency effect was not. These findings suggest that gamma band response is more than a marker of multisensory binding, being also sensitive to the correspondence between expected and actual multisensory stimulation. By contrast, theta band response was affected by congruency but appears to be largely immune to stimulation expectancy.