987 resultados para FOS EXPRESSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been hypothesized that the brain categorizes stressors and utilizes neural response pathways that vary in accordance with the assigned category. If this is true, stressors should elicit patterns of neuronal activation within the brain that are category-specific. Data from previous Immediate-early gene expression mapping studies have hinted that this is the case, but interstudy differences in methodology render conclusions tenuous. In the present study, immunolabelling for the expression of c-fos was used as a marker of neuronal activity elicited in the rat brain by haemorrhage, immune challenge, noise, restraint and forced swim. All stressors elicited c-fos expression in 25-30% of hypothalamic paraventricular nucleus corticotrophin-releasing-factor cells, suggesting that these stimuli were of comparable strength, at least with regard to their ability to activate the hypothalamic-pituitary-ad renal axis. In the amygdala, haemorrhage and immune challenge both elicited c-fos expression in a large number of neurons in the central nucleus of the amygdala, whereas noise, restraint and forced swim primarily elicited recruitment of cells within the medial nucleus of the amygdala. In the medulla, all stressors recruited similar numbers of noradrenergic (A1 and A2) and adrenergic (C1 and C2) cells. However, haemorrhage and immune challenge elicited c-fos expression In subpopulations of A1 and A2 noradrenergic cells that were significantly more rostral than those recruited by noise, restraint or forced swim. The present data support the suggestion that the brain recognizes at least two major categories of stressor, which we have referred to as 'physical' and 'psychological'. Moreover, the present data suggest that the neural activation footprint that is left in the brain by stressors can be used to determine the category to which they have been assigned by the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined if brain pathways in morphine-dependent rats are activated by opioid withdrawal precipitated outside the central nervous system. Withdrawal precipitated with a peripherally acting quaternary opioid antagonist (naloxone methiodide) increased Fos expression but caused a more restricted pattern of neuronal activation than systemic withdrawal (precipitated with naloxone which enters the brain). There was no effect on locus coeruleus and significantly smaller increases in Fos neurons were produced in most other areas. However in the ventrolateral medulla (A1/C1 catecholamine neurons), nucleus of the solitary tract (A2/C2 catecholamine neurons), lateral parabrachial nucleus, supramamillary nucleus, bed nucleus of the stria terminalis. accumbens core and medial prefrontal cortex no differences in the withdrawal treatments were detected. We have shown that peripheral opioid withdrawal can affect central nervous system pathways. Crown Copyright (C) 2001 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Psychological stressors trigger the activation of medullary noradrenergic cells, an effect that has been shown to depend upon yet-to-be-identified structures located higher in the brain. To test whether the amygdala is important in this regard, we examined the effects of amygdala lesions on noradrenergic cell responses to restraint, and also looked at whether any amygdala cells that respond to restraint project directly to the medulla. Ibotenic acid lesions of the medial amygdala completely abolished restraint-induced Fos expression in A1 and A2 noradrenergic cells. In contrast, lesions of the central amygdala actually facilitated noradrenergic cell responses to restraint. Tracer deposits in the dorsomedial (but not ventrolateral) medulla retrogradely labelled many cells in the central nucleus of the amygdala, but none of these cells expressed Fos in response to restraint. These data suggest for the first time that the medial amygdala is critical to the activation of medullary noradrenergic cells by a psychological stressor whereas the central nucleus exerts an opposing, inhibitory influence upon noradrenergic cell recruitment. The initiation of noradrenergic cell responses by the medial amygdala does not involve a direct projection to the medulla. Accordingly, a relay through some other structure, such as the hypothalamic paraventricular nucleus, warrants careful consideration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pain transmission at the spinal cord is modulated by descending actions that arise from supraspinal areas which collectively form the endogenous pain control system. Two key areas involved of the endogenous pain control system have a circunventricular location, namely the periaqueductal grey (PAG) and the locus coeruleus (LC). The PAG plays a crucial role in descending pain modulation as it conveys the input from higher brain centers to the spinal cord. As to the LC, it is involved in descending pain inhibition by direct noradrenergic projections to the spinal cord. In the context of neurological defects, several diseases may affect the structure and function of the brain. Hydrocephalus is a congenital or acquired disease characterized by an enlargement of the ventricles which leads to a distortion of the adjacent tissues, including the PAG and LC. Usually, patients suffering from hydrocephalus present dysfunctions in learning and memory and also motor deficits. It remains to be evaluated if lesions of the periventricular brain areas involved in pain control during hydrocephalus may affect descending pain control and, herein, affect pain responses. The studies included in the present thesis used an experimental model of hydrocephalus (the rat injected in the cisterna magna with kaolin) to study descending modulation of pain, focusing on the two circumventricular regions referred above (the PAG and the LC). In order to evaluate the effects of kaolin injection into the cisterna magna, we measured the degree of ventricular dilatation in sections encompassing the PAG by standard cytoarquitectonic stanings (thionin staining). For the LC, immunodetection of the noradrenaline-synthetizing enzyme tyrosine hydroxylase (TH) was performed, due to the noradrenergic nature of the LC neurons. In general, rats with kaolin-induced hydrocephalus presented a higher dilatation of the 4th ventricle, along with a tendency to a higher area of the PAG. Due to the validated role of detection the c-fos protooncogene as a marker of neuronal activation, we also studied neuronal activation in the several subnuclei which compose the PAG, namely the dorsomedial, dorsolateral, lateral and ventrolateral (VLPAG) parts. A decrease in the numbers of neurons immunoreactive for Fos protein (the product of activation of the c-fos protooncogene) was detected in rats injected with kaolin, whereas the remaining PAG subnuclei did not present changes in Fos-immunoreactive nuclei. Increases in the levels of TH in the LC, namely at the rostral parts of the nucleus, were detected in hydrocephalic animals. The following pain-related parameters were measured, namely 1) pain behavioural responses in a validated pain inflammatory test (the formalin test) and 2) the nociceptive activation of spinal cord neurons. A decrease in behavioral responses was detected in rats with kaolin-induced hydrocephalus was detected, namely in the second phase of the test (inflammatory phase). This is the phase of the formalin test in which the motor behaviour is less important, which is important since a semi-quantitative analysis of the motor performance of rats injected with kaolin indicates that these animals may present some motor impairments. Collectively, the results of the behavioral studies indicate that rats with kaolin-induced hydrocephalus exhibit hypoalgesia. A decrease in Fos expression was detected at the superficial dorsal layers of the spinal cord in rats with kaolin-induced hydrocephalus, further indicating that hydrocephalus decreases nociceptive responses. It remains to be ascertained if this is due to alterations in the PAG and LC in the rats with kaolin-induced hydrocephalus, which may affect descending pain modulation. It remains to be evaluated what are the mechanisms underlying the increased pain inhibition at the spinal dorsal horn in the hydrocephalus rats. Regarding the VLPAG, the decrease in neuronal activity may impair descending modulation. Since the LC has higher levels of TH in rats with kaolininduced hydrocephalus, which also appears to increase the noradrenergic innervation in the spinal dorsal horn, it is possible that an increase in the release of noradrenaline at the spinal cord accounts for pain inhibition. Our studies also determine the need to study in detail patients with hydrocephalus namely in what concerns their thresholds to pain and to perform imaging studies focused on the structure and function of pain control areas in the brain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Els malalts crítics presenten sovint seqüeles cognitives a llarg termini, l’aplicació de ventilació mecànica (VM) pot contribuir al seu desenvolupament. El principal objectiu del nostre estudi fou investigar l’efecte de dos patrons de ventilació (volum corrent elevat/baix) en l’activació neuronal (expressió de c-fos) en determinades àrees cerebrals en un model en rates. Després de 3 hores sota VM, es va trobar activació neuronal; la seva intensitat va ser superior al grup de volum corrent elevat, suggerint un efecte iatrogènic de la VM al cervell. Aquests resultats suggereixen que cal aprofundir en l’estudi del crosstalk cervell-pulmó en malalts crítics sota VM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The possible interactions between Delta9-tetrahydrocannabinol (THC) and nicotine remain unclear in spite of the current association of cannabis and tobacco in humans. The aim of the present study was to explore the interactions between these two drugs of abuse by evaluating the consequences of THC administration on the somatic manifestations and the aversive motivational state associated to nicotine withdrawal in mice. Acute THC administration significantly decreased the incidence of several nicotine withdrawal signs precipitated by mecamylamine or naloxone, such as wet-dog-shakes, paw tremor and scratches. In both experimental conditions, the global withdrawal score was also significantly attenuated by acute THC administration. THC also reversed conditioned place aversion associated to naloxone precipitated nicotine withdrawal. We have then evaluated whether this effect of THC was due to possible adaptive changes induced by chronic nicotine on CB1 cannabinoid receptors. The stimulation of GTPS-binding proteins by the cannabinoid agonist WIN 55,212-2 and the density of CB1 cannabinoid receptor binding labelled with [3H] CP-55,940 were not modified by chronic nicotine treatment in the different brain structures investigated. Finally, we evaluated the consequences of THC administration on c-Fos expression in several brain structures after chronic nicotine administration and withdrawal. c-Fos was decreased in the caudate putamen and the dentate gyrus after mecamylamine precipitated nicotine withdrawal. However, acute THC administration did not modify c-Fos expression under these experimental conditions. Taken together, these results indicate that THC administration attenuated somatic signs of nicotine withdrawal and this effect was not associated to compensatory changes on CB1 cannabinoid receptors during chronic nicotine administration. In addition, THC also ameliorated the aversive motivational consequences of nicotine withdrawal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A central feature of drugs of abuse is to induce gene expression in discrete brain structures that are critically involved in behavioral responses related to addictive processes. Although extracellular signal-regulated kinase (ERK) has been implicated in several neurobiological processes, including neuronal plasticity, its role in drug addiction remains poorly understood. This study was designed to analyze the activation of ERK by cocaine, its involvement in cocaine-induced early and long-term behavioral effects, as well as in gene expression. We show, by immunocytochemistry, that acute cocaine administration activates ERK throughout the striatum, rapidly but transiently. This activation was blocked when SCH 23390 [a specific dopamine (DA)-D1 antagonist] but not raclopride (a DA-D2 antagonist) was injected before cocaine. Glutamate receptors of NMDA subtypes also participated in ERK activation, as shown after injection of the NMDA receptor antagonist MK 801. The systemic injection of SL327, a selective inhibitor of the ERK kinase MEK, before cocaine, abolished the cocaine-induced ERK activation and decreased cocaine-induced hyperlocomotion, indicating a role of this pathway in events underlying early behavioral responses. Moreover, the rewarding effects of cocaine were abolished by SL327 in the place-conditioning paradigm. Because SL327 antagonized cocaine-induced c-fos expression and Elk-1 hyperphosphorylation, we suggest that the ERK intracellular signaling cascade is also involved in the prime burst of gene expression underlying long-term behavioral changes induced by cocaine. Altogether, these results reveal a new mechanism to explain behavioral responses of cocaine related to its addictive properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix-remodeling enzymes. In human skin samples, stromal fields adjacent to multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emerging evidence suggests that the hypocretinergic system is involved in addictive behavior. In this study, we investigated the role of these hypothalamic neuropeptides in anxiety-like responses of nicotine and stress-induced reinstatement of nicotine-seeking behavior. Acute nicotine (0.8 mg/kg, s.c.) induced anxiogenic-like effects in the elevated plus-maze and activated the paraventricular nucleus of thehypothalamus (PVN) as revealed by c-Fos expression. Pretreatment with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 orpreprohypocretin gene deletion blocked both nicotine effects. In the PVN, SB334867 also prevented the activation of corticotrophinreleasing factor (CRF) and arginine-vasopressin (AVP) neurons, which expressed Hcrtr-1. In addition, an increase of the percentage of c-Fos-positive hypocretin cells in the perifornical and dorsomedial hypothalamic (PFA/DMH) areas was found after nicotine (0.8 mg/kg,s.c.) administration. Intracerebroventricular infusion of hypocretin-1 (Hcrt-1) (0.75 nmol/1 l) or footshock stress reinstated a previouslyextinguished nicotine-seeking behavior. The effects of Hcrt-1 were blocked by SB334867, but not by the CRF1 receptor antagonistantalarmin. Moreover, SB334867 did not block CRF-dependent footshock-induced reinstatement of nicotine-seeking while antalarmin was effective in preventing this nicotine motivational response. Therefore, the Hcrt system interacts with CRF and AVP neurons in the PVN and modulates the anxiogenic-like effects of nicotine whereas Hcrt and CRF play a different role in the reinstatement of nicotineseeking.Indeed, Hcrt-1 reinstates nicotine-seeking through a mechanism independent of CRF activation whereas CRF mediates the reinstatement induced by stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

D-JNKI1, a cell-permeable peptide inhibitor of the c-Jun N-terminal kinase (JNK) pathway, has been shown to be a powerful neuroprotective agent after focal cerebral ischemia in adult mice and young rats. We have investigated the potential neuroprotective effect of D-JNKI1 and the involvement of the JNK pathway in a neonatal rat model of cerebral hypoxia-ischemia. Seven-day-old rats underwent a permanent ligation of the right common carotid artery followed by 2h of hypoxia (8% oxygen). Treatment with D-JNKI1 (0.3mg/kg intraperitoneally) significantly reduced early calpain activation, late caspase-3 activation and, in the thalamus, autophagosome formation, indicating an involvement of JNK in different types of cell death: necrotic, apoptotic and autophagic. However the size of the lesion was unchanged. Further analysis showed that neonatal hypoxia-ischemia induced an immediate decrease in JNK phosphorylation (reflecting mainly P-JNK1) followed by a slow progressive increase (including P-JNK3 54kDa), whereas c-jun and c-fos expression were both strongly activated immediately after hypoxia-ischemia. In conclusion, unlike in adult ischemic models, JNK is only moderately activated after severe cerebral hypoxia-ischemia in neonatal rats and the observed positive effects of D-JNKI1 are insufficient to give neuroprotection. Thus, for perinatal asphyxia, D-JNKI1 can only be considered in association with other therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms of pancreatic pain, a cardinal symptom of pancreatitis, are unknown. Proinflammatory agents that activate transient receptor potential (TRP) channels in nociceptive neurons can cause neurogenic inflammation and pain. We report a major role for TRPV4, which detects osmotic pressure and arachidonic acid metabolites, and TRPA1, which responds to 4-hydroxynonenal and cyclopentenone prostaglandins, in pancreatic inflammation and pain in mice. Immunoreactive TRPV4 and TRPA1 were detected in pancreatic nerve fibers and in dorsal root ganglia neurons innervating the pancreas, which were identified by retrograde tracing. Agonists of TRPV4 and TRPA1 increased intracellular Ca(2+) concentration ([Ca(2+)](i)) in these neurons in culture, and neurons also responded to the TRPV1 agonist capsaicin and are thus nociceptors. Intraductal injection of TRPV4 and TRPA1 agonists increased c-Fos expression in spinal neurons, indicative of nociceptor activation, and intraductal TRPA1 agonists also caused pancreatic inflammation. The effects of TRPV4 and TRPA1 agonists on [Ca(2+)](i), pain and inflammation were markedly diminished or abolished in trpv4 and trpa1 knockout mice. The secretagogue cerulein induced pancreatitis, c-Fos expression in spinal neurons, and pain behavior in wild-type mice. Deletion of trpv4 or trpa1 suppressed c-Fos expression and pain behavior, and deletion of trpa1 attenuated pancreatitis. Thus TRPV4 and TRPA1 contribute to pancreatic pain, and TRPA1 also mediates pancreatic inflammation. Our results provide new information about the contributions of TRPV4 and TRPA1 to inflammatory pain and suggest that channel antagonists are an effective therapy for pancreatitis, when multiple proinflammatory agents are generated that can activate and sensitize these channels.