986 resultados para FOOD INGREDIENTS
Resumo:
Brazil is the second biggest worldwide producer of cookies and there are many varieties in the market; however, only a few are gluten-free. The objectives of this work were to formulate two gluten-free cookies added with iron, peanut or almond, and analyze their physicochemical, chromatic and sensory properties. Moisture, instrumental color (L*, a*, b* and C*), ash, proteins, lipids, iron, carbohydrates (estimated by difference), and water activity were determined. The acceptance of the products was assessed by 115 untrained taste panelists using a five-point hedonic scale. The data collected from the physicochemical analyses were submitted to Levene's, ANOVA, and Tukey's tests, which showed statistical difference (p < 0.05) in all the attributes for centesimal composition, water activity, and color of the cookies. Peanut and almond cookies could be considered sources of iron once they presented at least 15% of the daily recommended value of intake. They also garnered acceptance indexes of 80 and 85%, respectively, concluding that both formulations developed in this study were source of iron and contained high concentration of lipids and proteins with great sensory acceptance, suggesting their potential consumption by gluten-intolerants.
Resumo:
Foods behave as non-Newtonian fluids, but little is known about how corn and soybean mix behave under viscometric flow. In order to characterize the rheological behavior of animal feed under viscometric flow, a 70:30 (mass:mass) mixture of ground corn and soybean grains was submitted to a capillary rheometer at 3 different temperatures (80, 120, and 160 °C), different moisture levels (26.5 ± 0.08; 30.4 ± 0.31, and 33.4 ± 0.05%), and 4 shear rates (30.4; 72.9; 304.3, and 728.6/second). Different strain rates and die dimensions were used to obtain the target shear rates. The resulting data were fitted to Power Law, Casson, and Bingham models. Based on experimental data, water content, mass temperature, and the effects of shear rate on the apparent shear viscosity of corn-soy mix were fitted to a single expression (p < 0.001, R² = 0.93): η = 18,769.7 (y)-0.86 e (-9.34 U + 935 T), where y is shear rate, U is sample moisture, and T is sample temperature in Kelvin scale. As expected, such mixture presented a pseudoplastic (shear-thinning) behavior.
Resumo:
The aim of this work was to evaluate spices and industrial ingredients for the development of functional foods with high phenolic contents and antioxidant capacity. Basil, bay, chives, onion, oregano, parsley, rosemary, turmeric and powdered industrial ingredients (β-carotene, green tea extract, lutein, lycopene and olive extract) had their in vitro antioxidant capacity evaluated by means of the Folin-Ciocalteu reducing capacity and DPPH scavenging ability. Flavonoids identification and quantification were performed by High Performance Liquid Chromatography (HPLC). The results showed that spices presented a large variation in flavonoids content and in vitro antioxidant capacity, according to kind, brand and batches. Oregano had the highest antioxidant capacity and parsley had the highest flavonoid content. The industrial ingredient with the highest antioxidant capacity was green tea extract, which presented a high content of epigalocatechin gallate. Olive extract also showed a high antioxidant activity and it was a good source of chlorogenic acid. This study suggests that oregano, parsley, olive and green tea extract have an excellent potential for the development of functional foods rich in flavonoids as antioxidant, as long as the variability between batches/brands is controlled.
Resumo:
This study aimed to evaluate the attitude of consumers towards information about dishes in a commercial restaurant. This research was conducted from January to April 2009 in a restaurant in the city of Santa Maria (RS), Brazil. Food information including the name of the dish, ingredients, health benefits and warnings, and calorie value was displayed. After providing this nutritional information, a questionnaire was applied to 300 consumers at the restaurant to observe their attitudes towards the food information. It was found that 10.57% of the respondents reported allergy or intolerance to some kinds of food and that 10.98% of the respondents reported having diseases that require moderate consumption and/or total restriction on the consumption of those foods. However, 84.96% of the respondents did not restrict consumption of any food, even though those foods may have posed a risk to their health, and 58.54% of the respondents consumed some food due to the potential benefits to their health. With regard to the respondents' level of satisfaction concerning the food information provided, 72.76% considered the information provided as very good. The respondents had a tendency to change their behavior towards consumption after having access to information about the dishes displayed.
Resumo:
The consumption of Brazilian cassava has been reduced due to a lack of adjustment to the modern lifestyle. To reverse this trend, new products could be developed specifically targeted to high-value niche markets. Cereal bars stand out as fast food high in nutritional value. A bar formula mimicking cereal bars was prepared using a mixture of Brazilian cassava flour, hydrogenated vegetable fat, dried bananas, ground cashew nuts, and glucose syrup. After being pressed, the bars were dried for 1 hour at 65 °C, packaged in films, and stored under ambient conditions. Its stability was continuously monitored for 210 days in order to ensure its safety and enable its introduction to the market. Texture loss was observed in the packed bars after 90 days of storage, but the sensory characteristics allowed the testers to perceive this tendency after only 30 days of storage. However, chemical, physical, and microbial analyses confirmed that the bars were safe for consumption for 180 days. The results showed that a 45 g cassava flour-based bar enriched with nuts and dried fruits can meet 6% of the recommended daily fiber intake with a caloric value between that of the common cereal bar and that of an energy bar. Adapting the formula with ingredients (fruits, nuts) from different regions of Brazil may add value to this traditional product as a fast food.
Resumo:
Fats and oils are very important raw materials and functional ingredients for several food products such as confectionery, bakery, ice creams, emulsions, and sauces, shortenings, margarines, and other specially tailored products. Formulated products are made with just about every part of chemistry, but they are not simple chemicals. In general, they consist of several, and often many, components. Each of these components has a purpose. Most formulated products have a micro- or nano-structure that is important for their function, but obtaining this structure is often the big challenge. Due to a rise in overweight or obesity, health concerns have increased. This fact has led to the need to the develop products with low fat content, which have become a market trend. In addition, the development of new products using fat substitutes can be a good option for companies that are always trying to reduce costs or substitute trans fat or saturated fat. However, the successful development of these products is still a challenge because fat plays multiple roles in determining the desirable physicochemical and sensory attributes, and because the consumers who want or need to replace these ingredients, seek products with similar characteristics to those of the original product. Important attributes such as smooth, creamy and rich texture; milky and creamy appearance; desirable flavor; and satiating effects are influenced by the droplets of fat, and these characteristics are paramount to the consumer and consequently crucial to the success of the product in the market. Therefore, it is important to identify commercially viable strategies that are capable of removing or reducing fat content of food products without altering their sensory and nutritional characteristics. This paper intended to provide an overview about the role of fat in different food systems such as chocolate, ice cream, bakery products like biscuits, breads, and cakes considering the major trends of the food industry to meet the demands of modern society.
Resumo:
In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.
Resumo:
Various food and feed samples including groundnut seed, maize, sorghum, soyabean cake, groundnut cake, cotton cake, poultry feed, buffalo milk, cow milk and milk powders were collected from farmers' fields, farmer's stores, oil millers storage, traders' storage, retail shops and supermarkets. More than 2000 samples were analysed by ELISA and most of the commodities, with the exception of sorghum seed, contained high levels of aflatoxin. Groundnut cake was one of the major cattle feed ingredients in the peri-urban area of Hyderabad (Andhra Pradesh, India) and >75% of the samples contained >100 µg/kg aflatoxin, leading to a high level of aflatoxin M1, in milk samples. Strategies to reduce aflatoxin levels (especially in groundnut) by management interventions at preharvest, harvest and storage, are discussed.
Resumo:
Food proteins such as milk and soy are a rich source of bioactive peptides. In the last decade, research into this area has intensified and new bioactive peptide sequences have been discovered with a range of apparent biological functions; for example, antihypertensive, antioxidant, and antimicrobial effects and opiate-like qualities have been reported. These peptides could therefore lead to the development of important functional food products and ingredients for the prevention and even treatment of chronic diseases such as cardiovascular disease and cancer. Peptides can be produced by fermentation with dairy starters for instance, and by enzymatic hydrolysis with pancreatic and microbial enzymes. Further purification is typically carried out by membrane filtration and/or chromatographic methods. The production of novel bioactive peptides and their incorporation into functional food products poses several technological challenges as well as regulatory and marketing issues. Proof of efficacy is of paramount importance; this should be verified by conducting appropriate tests in vivo in animals and in humans. In addition, tests for cytotoxicity and allergenicity must be conducted. Despite all of these hurdles, scientific evidence is increasingly demonstrating the health benefits of diet-based disease prevention, and therefore new developments in this area are likely to continue both at the research and the commercialisation level.
Resumo:
Flavour enhancers are of great importance to the food industry and the consumer, in terms of achieving strong, balanced and preferred product flavour. The understanding and use of flavour enhancers can help to avoid excessive use of individual ingredients such as salt or specific character impact flavours. This chapter first discusses savoury flavour enhancement through the use of ingredients rich in amino acids and 5’nucleotides. It later includes the potential role of peptides and Maillard derived compounds. The role of volatile flavour compounds in the enhancement of salt and sweet taste is also discussed.
Resumo:
This report summarises the proceedings of a meeting held by the Food and Health Forum at the Royal Society of Medicine, London, on 12 October 2011. The objective of the meeting was to highlight nutritional strategies targeted at cardiovascular health. This included a review of the effects of various foods, nutrients and ingredients on maintenance of healthy cholesterol levels, endothelial function and blood pressure
Resumo:
BACKGROUND: Umami taste in foods is elicited predominantly by the presence of glutamic acid and 5’-ribonucleotides, which act synergistically. This study aimed to use natural ingredients to maximise umami taste of a meat formulation and determine effects on liking of older consumers. METHODS: Cooked meat products with added natural ingredients (yeast extract, mycoscent, shiitake extract, tomato puree, soy sauce and soy bean paste) or monosodium glutamate (MSG) were prepared and compared to a control sample analytically (umami compounds), sensorially (sensory profile) and hedonically (liking by younger and older volunteers). Taste detection thresholds of sodium chloride and MSG of volunteers were collected. RESULTS: Four of the seven cooked meat products developed had a significantly higher content of umami-contributing compounds compared to the control. All products, except those containing MSG or tomato puree, were scored (by trained sensory panel) perceptually significantly higher in umami and / or salty taste compared to the control. Consumer tests showed a correlation of liking by the older cohort with perceived saltiness (ρ=0.76). CONCLUSION: The addition of natural umami-containing ingredients during the cooking of meat can provide enhanced umami and salty taste characteristics, this can lead to increased liking by some consumers, particularly those with raised taste detection thresholds.
Resumo:
The roles of some cake ingredients – oil, a leavening agent, and inulin – in the structure and physicochemical properties of batter and cakes were studied in four different formulations. Oil played an important role in the batter stability, due to its contribution to increasing batter viscosity and occluding air during mixing. The addition of the leavening agent was crucial to the final height and sponginess of the cakes. When inulin was used as a fat replacer, the absence of oil caused a decrease in the stability of the batter, where larger air bubbles were occluded. Inulin dispersed uniformly in the batter could create a competition for water with the flour components: gluten was not properly hydrated and some starch granules were not fully incorporated into the matrix. Thus, the development of a continuous network was disrupted and the cake was shorter and softer; it contained interconnected air cells in the crumb, and was easily crumbled. The structure studies were decisive to understand the physicochemical properties.