996 resultados para FLUX RATES
Resumo:
The Cretaceous Equatorial Atlantic Gateway between the Central and South Atlantic basins is of interest not only for paleoceanographic and paleoclimatic studies, but also because it provided particularly favourable conditions for the accumulation and preservation of organic-rich sediments. Deposition of carbonaceous sediments along the Côte d'Ivoire-Ghana Transform Margin (Ocean Drilling Program Leg 159) was intimately linked to the plate tectonic and paleoceanographic evolution of this gateway. Notably, the formation of a marginal basement ridge on the southeastern border of the transform margin provided an efficient shelter of the landward Deep Ivorian Basin against erosive and potentially oxidizing currents. Different subsidence histories across the transform margin were responsible for the development of distinct depositional settings on the crest and on both sides of the basement ridge. Whereas the southern, oceanward flank of the basement ridge was characterized by rapid, continuous deepening since last Albian-early Cenomanian, marine sedimentation on the northern, landward flank was interrupted by a period of uplift and erosion in the late Albian, and rapid subsidence started after the early Coniacian. Organic-rich sediments occur throughout almost the entire Cretaceous section, but hydrogen-rich marine black shales were exclusively recovered from core sections above an uplift-related unconformity. These black shales formed when separation of Africa and South America was sufficient to allow permanent oceanic midwater exchange after the late Albian. Four periods of black shale accumulation are recovered, some of them are correlated with the global oceanic anoxic events: in the last Albian-earliest Cenomanian, at the Cenomanian-Turronian boundary, during the middle Coniacian-early Campanian, and in the mid-Maastrichtian. These periods were characterized by increasing carbon flux to the seafloor, induced by enhanced palaeoproductivity and intensified supply of terrestrial organic matter. Black shale depostion appears to be intimately linked to periods of rising or maximum eustatic sea level and to the expansion of the oxygen minimum zone, as indicated by foraminiferal biofacies. Intervals between black shales units, in contrast, indicate a shrinking oxygen minimum zone and enhanced detrital flux rates, probably related to lowering sea level. Upper Cretaceous detritral limestones with high porosities may provide excellent hydrocarbon reservoirs, alsthough their areal extent appears to be limited. Palaeogene porcellanites, capped by Neogene pelagic marls and clays, extend over a wider area and max provide another target for hydrocarbon exploration.
Resumo:
Two experiments were conducted to measure urea recycling and rumen flow dynamics in young rusa deer fed low (LP) or high (HP) protein diets. Pool size and flux rate of labelled urea. into and out of the blood pool were measured using single intravenous (i.v.) injection solutions containing [C-14] - and [N-15]-urea. A curve peeling technique was used to fit the enrichment of N-15 or specific radioactivity (SRA) of C-14 to exponential equations. Body urea-N pool size was significantly greater (P < 0.05) when a HP, compared to a LP diet, was fed. Urea space, expressed as a percent of live weight, total flux rate of urea through the blood pool and the irreversible loss of urea was similar for both diets. The mean (+/- S.E.M.) concentration of plasma urea-N was greater when animals were fed the HP diet compared to the LP diet (2 1.1 +/- 0.3 versus 14.4 +/- 1.4 mg/100 ml, respectively). Voluntary feed intake and digestibility of dietary components were also measured. Daily dry matter intakes were not affected by the crude protein (CP) content of the diet, although apparent DM digestibility was significantly greater for HP diet fed in both experiments. An intraruminal infusion of CrEDTA was used to determine rumen flow dynamics. Ruminal mean retention time, relative net outflow rate of water and passage rate constant (k(w)) were significantly greater (P < 0.05) when the HP diet was fed compared to the LP diet. The extent of urea metabolism and flux rates of urea between the blood and secondary pools appear similar to those previously reported for other ruminants fed diets contrasting in CP content. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.
Resumo:
Although freshwater wetlands are among the most productive ecosystems on Earth, little is known of carbon dioxide (CO2) exchange in low latitude wetlands. The Everglades is an extensive, oligotrophic wetland in south Florida characterized by short- and long-hydroperiod marshes. Chamber-based CO2 exchange measurements were made to compare the marshes and examine the roles of primary producers, seasonality, and environmental drivers in determining exchange rates. Low rates of CO2 exchange were observed in both marshes with net ecosystem production reaching maxima of 3.77 and 4.28 μmol CO2 m−2 s−1 in short- and long-hydroperiod marshes, respectively. Fluxes of CO2 were affected by seasonality only in the short-hydroperiod marsh, where flux rates were significantly lower in the wet season than in the dry season. Emergent macrophytes dominated fluxes at both sites, though this was not the case for the short-hydroperiod marsh in the wet season. Water depth, a factor partly under human control, significantly affected gross ecosystem production at the short-hydroperiod marsh. As Everglades ecosystem restoration proceeds, leading to deeper water and longer hydroperiods, productivity in short-hydroperiod marshes will likely be more negatively affected than in long-hydroperiod marshes. The Everglades stand in contrast to many freshwater wetlands because of ecosystem-wide low productivity rates.
Resumo:
Although wetlands are among the world's most productive ecosystems, little is known of long-term CO2 exchange in tropical and subtropical wetlands. The Everglades is a highly managed wetlands complex occupying >6000 km2 in south Florida. This ecosystem is oligotrophic, but extremely high rates of productivity have been previously reported. To evaluate CO2 exchange and its response to seasonality (dry vs. wet season) in the Everglades, an eddy covariance tower was established in a short-hydroperiod marl marsh. Rates of net ecosystem exchange and ecosystem respiration were small year-round and declined in the wet season relative to the dry season. Inundation reduced macrophyte CO2 uptake, substantially limiting gross ecosystem production. While light and air temperature exerted the primary controls on net ecosystem exchange and ecosystem respiration in the dry season, inundation weakened these relationships. The ecosystem shifted from a CO2 sink in the dry season to a CO2 source in the wet season; however, the marsh was a small carbon sink on an annual basis. Net ecosystem production, ecosystem respiration, and gross ecosystem production were −49.9, 446.1 and 496.0 g C m−2 year−1, respectively. Unexpectedly low CO2 flux rates and annual production distinguish the Everglades from many other wetlands. Nonetheless, impending changes in water management are likely to alter the CO2 balance of this wetland and may increase the source strength of these extensive short-hydroperiod wetlands.
Resumo:
A semi-arid mangrove estuary system in the northeast Brazilian coast (Ceará state) was selected for this study to (i) evaluate the impact of shrimp farm nutrient-rich wastewater effluents on the soil geochemistry and organic carbon (OC) storage and (ii) estimate the total amount of OC stored in mangrove soils (0–40 cm). Wastewater-affected mangrove forests were referred to as WAM and undisturbed areas as Non-WAM. Redox conditions and OC content were statistically correlated (P < 0.05) with seasonality and type of land use (WAM vs. Non-WAM). Eh values were from anoxic to oxic conditions in the wet season (from − 5 to 68 mV in WAM and from < 40 to > 400 mV in Non-WAM soils) and significantly higher (from 66 to 411 mV) in the dry season (P < 0.01). OC contents (0–40 cm soil depth) were significantly higher (P < 0.01) in the wet season than the dry season, and higher in Non-WAM soils than in WAM soils (values of 8.1 and 6.7 kg m− 2 in the wet and dry seasons, respectively, for Non-WAM, and values of 3.8 and 2.9 kg m− 2 in the wet and dry seasons, respectively, for WAM soils; P < 0.01). Iron partitioning was significantly dependent (P < 0.05) on type of land use, with a smaller degree of pyritization and lower Fe-pyrite presence in WAM soils compared to Non-WAM soils. Basal respiration of soil sediments was significantly influenced (P < 0.01) by type of land use with highest CO2 flux rates measured in the WAM soils (mean values of 0.20 mg CO2 h− 1–g− 1 C vs. 0.04 mg CO2 h− 1–g− 1 C). The OC storage reduction in WAM soils was potentially caused (i) by an increase in microbial activity induced by loading of nutrient-rich effluents and (ii) by an increase of strong electron acceptors [e.g., NO3−] that promote a decrease in pyrite concentration and hence a reduction in soil OC burial. The current estimated OC stored in mangrove soils (0–40 cm) in the state of Ceará is approximately 1 million t.
Resumo:
Sixty surface sediment samples from the eastern South Atlantic Ocean including the Walvis Ridge, the Angola and Cape basins, and the Southwest African continental margin were analysed for their benthic foraminiferal content to unravel faunal distribution patterns and ecological preferences. Live (stained with Rose Bengal) and dead faunas were counted separately and then each grouped by Q-mode principal component analysis into seven principal faunal end-members. Then, multiple regression technique was used to correlate Recent assemblages with available environmental variables and to finally differentiate between four principal groups of environmental agents acting upon the generation of benthic foraminiferal assemblages: (1) seasonality of food supply and organic carbon flux rates, together with oxygen content in the pore and bottom waters; (2) lateral advection of deep-water masses; (3) bottom water carbonate corrosiveness; and (4) energetic state at the benthic boundary layer and grain size composition of the substrate. Food supply and corresponding dissolved oxygen contents in the pore and bottom waters turned out to be the most important factors which control the distribution pattern of the Recent benthic foraminifera. At the continental margin, in the zone of coastal upwelling and its mixing area, benthic foraminiferal assemblages are dominated by stenobathic high-productivity faunas, characterized by elevated standing stocks, low diversities and a large number of endobenthic living species. At the continental shelf and upper continental slope the live assemblages are characterized by Rectuvigerina cylindrica, Uvigerina peregrina s.1., Uvigerina auberiana and Rhizammina spp. while the dead assemblages are characterized by Cassidulina laevigata, Bolivina dilatata, Bulimina costata and B. mexicana. At the lower continental slope strong influence of high organic matter fluxes on the species composition is restricted to the area off the Cunene river mouth, where the live assemblage is dominated by Uvigerina peregrina s.1., the corresponding dead assemblage by Melonis barleeanum and M. zaandamae. In the adjacent areas of the lower continental slope the biocoenosis is characterized by Reophax bilocularis, and Epistominella exigua which becomes dominant in the corresponding dead assemblage. At the Walvis Ridge and in the abyssal Angola and Cape basins, where organic matter fluxes are low and highly seasonal, benthic foraminiferal assemblages reflect both the oligotrophic situation and the deep and bottom water mass configuration. The top and flanks of the Walvis Ridge are inhabited by the Rhizammina, Psammosphaera and R. bilocularis live assemblages, the corresponding dead assemblages are dominated by G. subglobosa on the ridge top and E. exigua on the flanks. Within the highly diverse E. exigua dead assemblage several associated epibenthic species coincide with the core of NADW between about 1600 and 3700 m water depth. These species include Osangularia culter, Cibicidoides kullenbergi, Melonis pompilioides, Bolivinita pseudothalmanni and Bulimina alazanensis. The assemblages of the abyssal Cape and Angola basins are characterized by Nuttallides umbonifer and a high proportion of agglutinated species. These species are adapted to very low organic matter fluxes and a carbonate corrosive environment.
Resumo:
We investigated 88 surface sediment samples taken with a multiple corer from the southwestern South Atlantic Ocean for their live (Rose Bengal stained) and dead benthic foraminiferal content. Using Q-Mode Principal Component Analysis six live and six dead associations are differentiated. Live and dead association distributions correspond fairly well; differences are mainly caused by downslope transport and selective test destruction. In addition, four potential fossil associations are calculated from the dead data set after removal of non-fossilizable species. These potential fossil associations are expected to be useful for paleoceanographic reconstructions. Environments are described in detail for the live and potential fossil associations and for selected species. Along the upper Argentine continental slope strong bottom currents control the occurrence of live, dead and potential fossil Angulogerina angulosa associations. Here, particles of a high organic carbon flux rate remain suspended. Below this high energy environment live, dead and potential fossil Uvigerina peregrina dominated associations correlate with enhanced sediment organic carbon content and still high organic carbon flux rates. The live A. angulosa and U. peregrina associations correlate with high standing crops. Furthermore, live and dead Epistominella exigua-Nuttallides umbonifer associations were separated. Dominance of a Nuttallides umbonifer potential fossil association relates to coverage by Antarctic Bottom Water (AABW) and Lower Circumpolar Deep Water (LCDW), above the Calcite Compensation Depth (CCD). Three associations of mainly agglutinated foraminifera occur in sediments bathed mainly by AABW or CDW. A Reophax difflugiformis association was found in mud-rich and diatomaceous sediments. Below the CCD, a Psammosphaera fusca association occurs in coarse sediments poor in organic carbon while a Cribrostomoides subglobosus-Ammobaculites agglutinans association covers a more variable environmental range with mud contents exceeding 30%. One single Eggerella bradyi-Martinottiella communis association poor in both species and individuals remains from the agglutinated associations below the CCD if only preservable species are considered for calculation.
Resumo:
Time series of terrigenous source elements (Al, K, Ti, Zr) from core GeoB4901-8 recovered from the deep-sea fan of the Niger River record variations in riverine sediment discharge over the past 245,000 yr. Although the flux rates of all the elements depend on physical erosion, which is mainly controlled by the extent of vegetation coverage in central Africa, element/Al ratios reflect conditions for chemical weathering in the river basin. Maximum sediment input to the ocean occurs during cold and arid periods, when precipitation intensity and associated freshwater runoff are reduced. High carbonate contents during the same periods indicate that the sediment supply has a positive effect on river-induced marine productivity. In general, variations in the terrestrial signals contain a strong precessional component in tune with changes in low-latitude solar radiation. However, the terrestrial signal lags the insolation signal by several thousand years. K/Al, Ti/Al, and Zr/Al records reveal that African monsoonal precipitation depends on high-latitude forcing. We attribute the shift between insolation cycle and river discharge to the frequently reported nonlinear response of African climate to primary orbital configurations, which may be caused by a complex interaction of the secondary control parameters, such as surface albedo and/or thermohaline circulation.
Resumo:
Pelagic clay of the east-central Pacific province is shown to be a mixture of three primary detrital components, reflecting continental source areas in Asia, North America, and Central and South America. Relative contributions from each source area are a function of geography, and this distribution appears to have remained constant over the past five million years, despite changing flux rates. A Q-mode factor analysis of downcore records for Pb, Sr, and Nd isotopes identified three factors that account for 98% of the total variance. These factors represent the radiogenic isotopic signatures of 1) late Cenozoic Asian dust, which dominates in the central North Pacific; 2) North American continental hemipelagic/eolian sources, restricted mainly to the easternmost North Pacific at ~30 °N latitude; and 3) Central and South American sources, restricted to areas east of ~100 °W longitude. South of the Intertropical Convergence Zone (~6 °N), the Asian dust signature diminishes abruptly. We conclude that late Cenozoic Asian dust sources can be isotopically differentiated downcore from both North American and South and Central American sources in the eastcentral Pacific. This approach has a utility for identifying changes in long-term Cenozoic atmospheric circulation patterns.
Resumo:
Along the N-S-transect of DSDP-Sites 5446, 397, 141, and 366, oxygen and carbon isotopes, flux rates of calcium carbonate, terrigenous matter, and biogenic opal, clay minerals and the size distribution of terrigenous partictes were determined in order to assess the ties between atmospheric and oceanic surface and deep-water circulation off northwest Africa during the late Neogene. During the last 9 m.y., both the paleoceanography in the eastern Atlantic and west African paleodimates were intimately correlated with the evolution of the polar ice sheets as reflected in the benthos d18O curves of the 4 DSDP-Sites. These records make it possible to distinguish six major time intervals which were charaterized by long-term persistent regimes of climatic stability or climatic change. Short-term, "Milankovitch"-type cycles superimpose the long-term climatic evolution and may reflect the chronostratigraphic control fluctuations of the solar insolation persisting back to pre-Pleistocene times. Relatively stable, warm climates prevailed during the late Tortonian/early Messinean, 9 to 6 m.y., and the early Pliocene, 4.5 to 3.5 m.y. ago. Based on d18O curves, the amplitudes of short-term climatic variation were generally low, and the ice sheets were smaller than during peak Holocene time. Oceanic circulation and resulting paleoproductivity in upwelling zones were insignificant. The strength of dust supplying meridional trade winds was low (3 to 5 m/s), interglacial-style zonal winds near the ITCZ were dominant, as indicated by the high abundance of kaolinite. Phases of fluvial sediment supply were common. Humidity was characteristic of the climate in northwest Africa for the major part of this time. Major episodes of climatic deterioration in the subtropics occurred in the latest Miocene/early Pliocene, between some 5.6 and 5.2 and between 4.9 and 4.6 m.y. ago, in the late Pliocene, between 3.2 and 2.4 m.y. ago, and again in the Quaternary, near 1 m.y. ago. The episodes were correlated with marked increases of the global ice volume, as revealed by drastic increases of d18O values. They suggest sea-level falls of up to 70 m below the present sea level in the latest Miocene and earliest Pliocene and of 145 m in the latest Pliocene and Quaternary. The climatic changes resulted in strongly enhanced meridional trade winds as suggested by coarser terrigenous grain-sizes, increased mass accumulation rates of eolian dust, and changes in clay-mineral composition from dominantly kaolinite to illite and chlorite. The meridional trade winds reached speeds of 8 to 10 m/s with a maximum near 15 m/s. The enhanced winds probably led t o intensified coastal upwelling as shown by the contemporaneous local increase i n the deposition of biogenic silica and the local depletion of 13C at Site 397. The most drastic environmental changes near 2.4 and 1 m.y. ago coincide with hiatuses which may indicate phases of general erosion due to strongly enhanced deep-water circulation in the northeast At1antic along the northwest African continental margin. The occasional occurrence of quartz grains coarser than 250 µm may suggest ice-rafted debris in sediments off Morocco. During these time intervals the climate in NW-Africa was dominantly arid. Nevertheless, fluvial runoff (and humidity) continued to be important during intermittent warm phases of the short-term climatic cycles. During the end and the beginning of (inter-) glacial times, fluvial supply of nutrients seems to be the dominant factor, controling phases of enhanced paleoproductivity observed off northwest Africa, whereas during phases of glacial maximum strenger fertility of (increased) coastal upwelling becomes more important. A long-term evolution of paleoenvironments during the last 40 m.y. is depicted in the sediments of Site 366 and is clearly controlled by the plate tectonic route of this Site. During Oligocene times, Site 366 lay in the center of the equatorial upwelling, as shown by the high content of biogenic silica contributing up to 100 % of the carbonate-free sediment fraction >6 µm. The influence of equatorial upwelling abruptly terminated near 15 m.y. ago, a change in the record exaggerated by a hiatus of about 2 m.y. Prior to 25 m.y., the terrigenous input at the paleolatitude of Site 366 was restricted t o eolian sediment supply from South Africa by southeasterly trade winds, as shown by dominantly illite and chlorite in the clay fraction and extremely fine-grained terrigenous matter. Near the Oligocene/Miocene boundary, Site 366 drifted across the equator into the belt of the northeasterly trade winds, which is inferred from the increased content of kaolinite and coarser grain sizes of the terrigenous sediment fraction. The clay-mineral and grain-size compositions of Site 366 do not reflect a noteworthy northward shift of the ITCZ during late Miocene and early Pliocene times, i.e. no marked global circulation asymmetry due to the possible absence of a major Northern Hemisphere glaciation (Flohn 1981). This lack of a more northerly position of the ITCZ may result from a bipolar glaciation already existing during late Miocene times, such as also suggested by the evidence of tillites on Iceland and in southern Alaska during those intervals (e.g., Denton & Amstrong 1969, Mudie & Helgason 1983).
Resumo:
Nitrous oxide (N2O) is a potent greenhouse gas with a global warming potential 298 times higher than carbon dioxide. Soils are a natural source of N2O, contributing 65% of global emissions. This paper is the first in Australia to measure and compare N2O emissions from pre-plant controlled release (CR) and conventional granular (CV) fertilisers in pineapple production using static PVC chambers to capture N2O emissions. Farm 1 cumulative emissions from the CR fertiliser were 3.22 kg ha-1 compared to 6.09 kg ha-1 produced by the CV. At farm 2 the CV blend emitted 2.36 kg ha-1 in comparison to the CR blend of 2.92 kg ha-1. Daily N2O flux rates showed a relationship of direct response to rainfall and soil moisture availability. High emissions were observed for wheel tracks where increased N2O emissions may be linked to soil compaction and waterlogging that creates anaerobic conditions after rain events. Emission measurements over three months highlighted the inconsistencies found in other studies relative to reducing emissions through controlled release nitrogen. More investigations are required to verify the benefits associated with controlled release fertiliser use in pineapples, placement and seasonal timing to address N2O emissions in pineapples.
Resumo:
Brazil typifies the land use changes happening in South America, where natural vegetation is continuously converted into agriculturally used lands, such as cattle pastures and croplands. Such changes in land use are always associated with changes in the soil nutrient cycles and result in altered greenhouse gas fluxes from the soil to the atmosphere. In this study, we analyzed literature values to extract patterns of direct nitrous oxide (N2O) emissions from soils of different ecosystems in Brazil. Fluxes from natural ecosystems exhibited a wide range: whereas median annual flux rates were highest in Amazonian and Atlantic rainforests (2.42 and 0.88 kg N ha-1), emissions from cerrado soils were close to zero. The decrease in emissions from pastures with increasing time after conversion was associated with pasture degradation. We found comparatively low N2O-N fluxes from croplands (-0.07 to 4.26 kg N ha-1 yr-1 , median 0.80 kg N ha-1 yr-1) and a low response to N fertilization. Contrary to the assumptions, soil parameters, such as pH, Corg, and clay content emerged as poor predictors for N2O fluxes. This could be a result of the formation of micro-aggregates, which strongly affect the hydraulic properties of the soil, and consequently define nitrification and denitrification potentials. Since data from croplands mainly derived from areas that had been under natural cerrado vegetation before, it could explain the low emissions under agriculture. Measurements must be more frequent and regionally spread in order to enable sound national estimates.