976 resultados para FK 409 supraoptic nucleus
Resumo:
The involvement of dopamine (DA) mechanisms in the nucleus accumbens (NAC) in fear conditioning has been proposed by many studies that have challenged the view that the NAC is solely involved in the modulation of appetitive processes. However, the role of the core and shell subregions of the NAC in aversive conditioning remains unclear. The present study examined DA release in these NAC subregions using microdialysis during the expression of fear memory. Guide cannulae were implanted in rats in the NAC core and shell. Five days later, the animals received 10 footshocks (0.6 mA, 1 s duration) in a distinctive cage A (same context). On the next day, dialysis probes were inserted through the guide cannulae into the NAC core and shell subregions, and the animals were behaviorally tested for fear behavior either in the same context (cage A) or in a novel context (cage B). Dialysates were collected every 5 min for 90 min and analyzed by high-performance liquid chromatography. The rats exhibited a significant fear response in cage A but not in cage B. Moreover, increased DA levels in both NAC subregions were observed 5-25 min after the beginning of the test when the animals were tested in the same context compared with accumbal DA levels from rats tested in the different context. These findings Suggest that DA mechanisms in both the NAC core and shell may play an important role in the expression of contextual fear memory. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Independent studies have shown that the median raphe nucleus (MRN) and dorsal hippocampus (DH) are involved in the expression of contextual conditioned fear (CFC). However, studies that examine the integrated involvement of serotonergic mechanisms of the MRN-DH are lacking. To address this issue, a CFC paradigm was used to test whether the serotonergic projections from the MRN to DH can influence CFC. Serotoninergic drugs were infused either into the MRN or DH prior to testing sessions in which freezing and startle responses were measured in the same context where 6 h previously rats received footshocks. A reduction of serotonin (5-HT) transmission in the MRN by local infusions of the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) decreased freezing in response to the context but did not reduce fear-potentiated startle. This pattern of results is consistent with the hypothesis that MRN serotonergic mechanisms selectively modulate the freezing response to the aversive context. As for the DH, a decrease in postsynaptic 5-HT receptor activity at projection areas has been proposed to be the main consequence of 5-HT(1A) receptor activation in the MIRN. Intra-DH injections of 8-OH-DPAT inhibited both the freezing and fear-potentiated startle response to the context. To reconcile these findings, an inhibitory mechanism may exist between the incoming 5-HT pathway from the MRN to DH and the neurons of the DH output to other structures. The DH-amygdala or medial prefrontal cortex projections could well be this output circuit modulating the expression of CFC as revealed by measurements of Fos immunoreactivity in these areas. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Aims: To investigate whether anterior thalamic nucleus (AN) lesions are protective against spontaneous recurrent seizures in the chronic phase of the pilocarpine model of epilepsy. Methods: Two groups of rats were treated with bilateral AN radiofrequency thalamotomies or sham surgery 2 weeks after pilocarpine-induced status epilepticus. After the lesions, animals were videotaped from the 2nd to the 8th week after status epilepticus (total 180 h). Results: During the 6 weeks of observation, no differences in the frequency of spontaneous seizures were found between animals that had bilateral AN lesions (n = 26; 3.1 +/- 0.6 seizures per animal) and controls (n = 25; 3.0 +/- 0.6 seizures per animal; p = 0.8). Conclusions: We conclude that AN thalamotomies were not effective in reducing the frequency of seizures during the chronic phase of the pilocarpine model of epilepsy. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
The role of catecholamines in the control of the GnRH pulse generator is unclear as studies have relied on the use of peripheral or intracerebroventricular injections, which lack specificity in relation to the anatomical site of action. Direct brain site infusions have been used, however, these are limited by the ability to accurately target small brain regions. One such area of interest in the control of GnRH is the median eminence and arcuate nucleus within the medial basal hypothalamus. Here we describe a method of stereotaxically targeting this area in a large animal (sheep) and an infusion system to deliver drugs into unrestrained conscious animals. To test our technique we infused the dopamine agonist, quinpirole or vehicle into the medial basal hypothalamus of ovariectomised ewes. Quinpirole significantly suppressed LH pulsatility only in animals with injectors located close to the lateral median eminence. This in vivo result supports the hypothesis that dopamine inhibits GnRH secretion by presynaptic inhibition in the lateral median eminence. Also infusion of quinpirole into the medial basal hypothalamus suppressed prolactin secretion providing in vivo evidence that is consistent with the hypothesis that there are stimulatory autoreceptors on tubero-infundibular dopamine neurons. (C) 1997 Elsevier Science B.V.
Resumo:
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Resumo:
Conclusion. The study shows that there are differences in the measurement of the action potentials with and without the stylet in the Nucleus Freedom Contour Advance that are higher in the apex than in the base of the cochlea. Objectives. To determine if there are differences in the intraoperative impedances and in the neural response telemetry threshold values in the Nucleus Freedom Contour Advance before and after stylet removal. Subjects and methods. This was a prospective clinical study. Intraoperative impedances and neural response telemetry in users of the Freedom Contour Advance Cochlear Implant were measured before and after stylet removal. Results. There was a significant reduction in the impedance values of an average 1.5 k Omega +/- 2.3 in common ground mode and 1.3 k Omega +/- 2.3 for all monopolar modes after the stylet removal (p < 0.001). When analyzing the apical, medium, and basal electrodes, there was a statistically significant reduction in the neural response thresholds after stylet removal only in the apical electrodes (p = 0.001).
Resumo:
Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 mu g/0.2 mu L) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also Suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The dorsal premammillary nucleus (PMd) is a hypothalamic structure that plays a pivotal role in the processing of predatory threats. Lesions of this nucleus virtually eliminate the expression of defensive responses to predator exposure. However, little is known about the neurotransmitters responsible for these behavioral responses. Since PMd neurons express ionotropic glutamate receptors and exposure to predators have been shown to activate nitric oxide (NO) producing cells in this region, the aim of this study was to verify the involvement of glutamate and NO-mediated neurotransmission in defensive reactions modulated by the PMd. We tested in male Wistar rats the hypothesis that intra-PMd injection of the NMDA receptor antagonist, AP7, or the NO synthase inhibitor, N-propyl-L-arginine (NP), would attenuate behavioral responses induced by cat exposure. Our results showed that both AP7 and NP significantly attenuated the behavioral responses induced by the live cat. These results suggest that the NMDA/NO pathway plays an important role in the behavioral responses mediated by the PMd. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The medial amygdaloid nucleus (MeA) modulates several physiological and behavioral processes and among them, the cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint evokes cardiovascular responses, which are characterized by both elevated blood pressure (BP) and intense heart rate (HR) increase. We presently report effects of MeA pharmacological manipulations on BP and HR responses evoked by acute restraint in rats. Bilateral microinjection of 100 nL of the unspecific synaptic blocker COCl(2) (1 mM) into the MeA increased HR response to acute restraint, without significant effect on the BP response. This result indicates an inhibitory influence of MeA on restraint-evoked HR changes. Injections of the non-selective muscarinic receptor antagonist atropine (3 nmol); the inhibitor of choline uptake hemicholinium (2 nmol) or the selective M(1)-receptor antagonist pirenzepine (6 nmol) caused effects that were similar to those caused by cobalt. These results suggest that local cholinergic neurotransmission and M(1)-receptors mediate the MeA inhibitory influence on restraint-related HR responses. Pretreatment with the M3 receptor antagonist 4-DAMP (4-Diphenylacetoxy-N-methylpiperidine methiodide-2 nmol) did not affect restraint-related cardiovascular responses, reinforcing the idea that M(1)-receptors mediate MeA-related inhibitory influence on restraint-evoked HR increase. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of cardiovascular control. Stimulation of the PVN evokes changes in blood pressure and heart rate. Additionally, this brain area is connected to several limbic structures implicated in behavioral control, as well as to forebrain and brainstem structures involved in cardiovascular control. This evidence indicates that the PVN may modulate cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint is an unavoidable stressor that evokes marked and sustained cardiovascular changes, which are characterized by elevated mean arterial pressure (MAP) and an intense heart rate (HR) increase. We report on the effect of inhibition of PVN synapses on MAP and HR responses evoked by acute restraint in rats. Bilateral microinjection of the nonspecific synaptic blocker cobalt (CoCl2, 1mM/100nl) into the PVN did not change the HR response or the initial peak of the MAP response to restraint stress, but reduced the area under the curve of the MAP response. Moreover, bilateral microinjection of cobalt in areas surrounding the PVN did not change the cardiovascular response to restraint. These results indicate that synapses in the PVN are involved in the neural pathway that controls blood pressure changes evoked by restraint.
Resumo:
The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.
Resumo:
The bed nucleus of stria terminalis (BST) has a tonic modulating role on the baroreflex parasympathetic component. In the present study, we verified that local BST-adrenoceptors modulate baroreflex-evoked bradycardiac responses in unanesthetized rats. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL) into the BST increased the gain of reflex bradycardia in response to mean arterial pressure increases caused by intravenous (i.v.) infusion of phenylephrine, suggesting that BST alpha(1)-adrenoceptors modulate baroreflex bradycardiac response. Bilateral microinjection of either the selective alpha(2)-adrenoceptor antagonist RX821002 (15 nmol/100 nL) or the non-selective beta-adrenoceptor antagonist propranolol (15 nmol/100 nL) into the BST had not affected baroreflex bradycardia. Animals were pretreated intravenously with the cholinergic muscarinic receptor antagonist homatropine methyl bromide (HMB, 1.5 mg/Kg) to test the hypothesis that activation of alpha(1)-adrenoceptors in the BST would modulate the baroreflex parasympathetic component. Baroreflex bradycardiac responses evoked before and after BST treatment with WB4101 were no longer different when rats were pretreated with HMB. These results suggest that parasympathetic activation accounts for the effects saw after BST pharmacological manipulation and ruling out the possibility of a sympathetic withdraw. In conclusion, our data point out that local alpha(1)-adrenoceptors mediate the BST tonic influence on the baroreflex bradycardiac response modulating parasympathetic cardiac activity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Changes in 5-HT1A receptor-mediated neurotransmission at the level of the median raphe nucleus (MRN) are reported to affect the expression of defensive responses that are associated with generalized anxiety disorder (e.g. inhibitory avoidance) but not with panic (e.g. escape). The objective of this study was to further explore the involvement of MRN 5-HT1A receptors in the regulation of generalized anxiety-related behaviours. Results of experiment 1 showed that intra-MRN injection of the 5-HT1A/7 receptor agonist 8-OH-DPAT (0.6 nmol) in male Wistar rats impaired the acquisition of inhibitory avoidance, without interfering with the performance of escape in the elevated T-maze test of anxiety. Pre-treatment with the 5-HT1A receptor antagonist WAY-100635 (0.18 nmol) fully blocked this anxiolytic-like effect. As revealed by experiment 2, intra-MRN injection of 8-OH-DPAT (0.6, 3 or 15 nmol) also caused anxiolytic effect in rats submitted to the light-dark transition test, another animal model that has been associated with generalized anxiety. In the same test, intra-MRN injection of WAY-100635 (0.18, 0.37 or 0.74 nmol) caused the opposite effect. Overall, the current findings support the view that MRN 5-HT neurons, through the regulation of 5-HT1A somatodendritic autoreceptors, are implicated in the regulation of generalized anxiety-associated behaviours. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick test. These cortices send inputs to the anterior pretectal nucleus (APtN) which is implicated in antinociception and nociception. At least muscarinic cholinergic, opioid, and serotonergic mechanisms in the APtN are involved in stimulation-produced antinociception (SPA) from the nucleus. In this study, the injection of 2% lidocaine (.25 mu L) or methysergide (40 and 80 ng/.25 mu L) into the APtN reduced the duration but did not change the intensity of SPA from the OC, whereas both duration and intensity of SPA from the RSC were significantly reduced in rats treated with lidocaine or naloxone (10 and 50 ng/.25 mu L), injected into the ANN. Naloxone or methysegide injected into the APtN was ineffective against SPA from the OC or RSC, respectively. Atropine (100 ng/.25 mu L) injected into the ANN was ineffective against SPA from either the OC or RSC. We conclude that the APtN acts as an intermediary for separate descending pain inhibitory pathways activated from the OC and RSC, utilizing at least serotonin and endogenous opioid as mediators in the nucleus. Perspective: Stimulation-induced antinociception from the retrosplenial or occipital cortex in the rat tail-flick test depends on the activation of separate descending pain inhibitory pathways that utilize the APtN as a relay station. (C) 2011 by the American Pain Society
Resumo:
The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and humans. The aim of this study was to assess the involvement of the dorsal raphe nucleus (DRN) in the post-ictal antinociception. The second aim was to study the role of serotonergic intrinsic mechanisms of the DRN in this hypo-algesic phenomenon. Pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl- influx antagonist, was peripherally used to induce tonic-clonic seizures in Wistar rats. The nociceptive threshold was measured by the tail-flick test. Neurochemical lesions of the DRN, performed with microinjection of ibotenic acid (1.0 mu g/0.2 mu L), caused a significant decrease of tonic-clonic seizure-induced antinociception, suggesting the involvement of this nucleus in this antinociceptive Process. Microinjections of methysergide (1.0 and 5.0 mu g/0.2 mu L), a non-selective serotonergic receptor antagonist, into DRN caused a significant decrease in the post-ictal antinociception in seizing animals, compared to controls, in all post-ictal periods Presently studied. These findings were corroborated by microinjections of ketanserin (at 1.0 and 5.0 mu g/0.2 mu L) into DRN. Ketanserin is an antagonist with large affinity for 5-HT2A/2C serotonergic receptors, which, in this Case, Caused a significant decrease in the tail-flick latencies in seizing animals, compared to controls after the first 20 min following tonic-clonic convulsive reactions. These results indicate that serotonergic neurotransmission of the DRN neuronal clusters is involved in the organization of the post-ictal hypo-algesia. The 5-HT2A/2C receptors of DRN neurons seem to be critically involved in the increase of nociceptive thresholds following tonic-clonic seizures. (c) 2008 Elsevier Inc, All rights reserved.