984 resultados para FINE PARTICULATE MATTER SOURCES
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.
Resumo:
Objectives - This study intended to characterize work environment contamination by particles in 2 waste-sorting plants. Material and Methods - Particles were measured by portable direct-reading equipment. Besides mass concentration in different sizes, data related with the number of particles concentration were also obtained. Results - Both sorting units showed the same distribution concerning the 2 exposure metrics: particulate matter 5 (PM5) and particulate matter 10 (PM10) reached the highest levels and 0.3 μm was the fraction with a higher number of particles. Unit B showed higher (p < 0.05) levels for both exposure metrics. For instance, in unit B the PM10 size is 9-fold higher than in unit A. In unit A, particulate matter values obtained in pre-sorting and in the sequential sorting cabinet were higher without ventilation working. Conclusions - Workers from both waste-sorting plants are exposed to particles. Particle counting provided additional information that is of extreme value for analyzing the health effects of particles since higher values of particles concentration were obtained in the smallest fraction.
Resumo:
Particulate matter (PM) can have a significant impact on human health and on artifacts stored and kept inside museums and archives. To the author's knowledge, its immediate and/or longterm concentrations and distribution on Portuguese archives has never been determined. Four Portuguese archives (with and without HVAC/air filtration systems) were selected and the immediate concentration of airborne particulate matter was measured by active sampling. Indoor-outdoor ratios were also determined. International and national guidelines were used to ascertain the environment’s quality, both for the readers and staff and for the documents preserved in these institutions. Inside, PM2.5 ranged between 0.37μg/m3 and 27.61μg/m3, while PM10 ranged between 4.43μg/m3 and 285.52μg/m3. The lowest values were determined in storage rooms and the highest in reading rooms. In terms of human health, Portuguese guidelines for immediate PM10 concentration were not met in several locations. For conservation purposes, storage rooms were classified according to an original air quality grid. Air filtration systems proved valuable in maintaining a safe environment for our written heritage and the staff and readers that deal with it and care for it every day. This study constitutes the first snapshot of the particulate matter concentrations and distribution in Portuguese Archives.
Resumo:
This paper describes the methodology adopted to assess local air quality impact in the vicinity of a coal power plant located in the south of Portugal. Two sampling areas were selected to assess the deposition flux of dust fallout and its potential spatial heterogeneity. The sampling area was divided into two subareas: the inner, with higher sampling density and urban and suburban characteristics, inside a 6-km circle centered on the stacks, and an outer subarea, mainly rural, with lower sampling density within a radius of 20 km. Particulate matter deposition was studied in the vicinity of the coal fired power plant during three seasonal sampling campaigns. For the first one, the average annual flux of dust fallout was 22.51 g/(m2 yr), ranging from 4.20 to 65.94 g/(m2 yr); for the second one was 9.47 g/(m2 yr), ranging from 0.78 to 32.72 g/(m2 yr) and for the last one was 38.42 g/(m2 yr), ranging from 1.41 to 117.48 g/(m2 yr). The fallout during the second campaign turned out to be much lower than for others. This was in part due to meteorological local patterns but mostly due to the fact that the power plant was not working at full power during the second sampling campaign.155
Resumo:
The increase in mortality risk associated with long-term exposure to particulate air pollution is one of the most important, and best-characterised, effects of air pollution on health. This report presents estimates of the size of this effect on mortality in local authority areas in the UK, building upon the attributable fractions reported as an indicator in the public health outcomes framework for England. It discusses the concepts and assumptions underlying these calculations and gives information on how such estimates can be made. The estimates are expected to be useful to health and wellbeing boards when assessing local public health priorities, as well as to others working in the field of air quality and public health. The estimates of mortality burden are based on modelled annual average concentrations of fine particulate matter (PM2.5) in each local authority area originating from human activities. Local data on the adult population and adult mortality rates is also used. Central estimates of the fraction of mortality attributable to long-term exposure to current levels of anthropogenic (human-made) particulate air pollution range from around 2.5% in some local authorities in rural areas of Scotland and Northern Ireland and between 3 and 5% in Wales, to over 8% in some London boroughs. Because of uncertainty in the increase in mortality risk associated with ambient PM2.5, the actual burdens associated with these modelled concentrations could range from approximately one-sixth to about double these figures. Thus, current levels of particulate air pollution have a considerable impact on public health. Measures to reduce levels of particulate air pollution, or to reduce exposure of the population to such pollution, are regarded as an important public health initiative.
Resumo:
BACKGROUND: Particulate air pollution is associated with increased risk of cardiovascular disease and stroke. Although the precise mechanisms underlying this association are still unclear, the induction of systemic inflammation following particle inhalation represents a plausible mechanistic pathway.¦METHODS: We used baseline data from the CoLaus Study including 6183 adult participants residing in Lausanne, Switzerland. We analyzed the association of short-term exposure to PM10 (on the day of examination visit) with continuous circulating serum levels of high-sensitive C-reactive protein (hs-CRP), interleukin 1-beta (IL-1β), interleukin 6 (IL-6), and tumor-necrosis-factor alpha (TNF-α) by robust linear regressions, controlling for potential confounding factors and assessing effect modification.¦RESULTS: In adjusted analyses, for every 10 μg/m3 elevation in PM10, IL-1ß increased by 0.034 (95 % confidence interval, 0.007-0.060) pg/mL, IL-6 by 0.036 (0.015-0.057) pg/mL, and TNF-α by 0.024 (0.013-0.035) pg/mL, whereas no significant association was found with hs-CRP levels.¦CONCLUSIONS: Short-term exposure to PM10 was positively associated with higher levels of circulating IL-1ß, IL-6 and TNF-α in the adult general population. This positive association suggests a link between air pollution and cardiovascular risk, although further studies are needed to clarify the mechanistic pathway linking PM10 to cardiovascular risk.
Resumo:
Short-term exposure to ambient particulate matter with aerodynamic diameters<10 µm were found to be positively associated with blood pressure. Yet, little information exists regarding the association between particles and circadian rhythm of blood pressure. Hence, we analyzed the association of exposure to particulate matter with aerodynamic diameters<10 µm on the day of examination and ≤7 days before with ambulatory blood pressure and with sodium excretion in 359 adults from the general population using multiple linear regression. After controlling for potential confounders, a 10-µg/m3 increase in particulate matter with aerodynamic diameters<10 µm levels was associated with nighttime systolic blood pressure (β=1.32 mm Hg 95% CI, 0.06-2.58 mm Hg at lag 0; P=0.04), nighttime diastolic blood pressure (0.72 mm Hg 95% CI, 0.03-1.42 mm Hg at lag 2; P=0.04), nocturnal systolic blood pressure dipping (-0.96 mm Hg 95% CI, -1.89 to -0.03 mm Hg at lag 0; P=0.044), and daytime urinary sodium excretion (-0.05 log-mmol/min 95% CI, -0.10 to -0.01 log-mmol/min at lag 0; P=0.027) but not with nighttime sodium excretion. The associations with blood pressure rapidly diminished with increasing lag days, and the associations with daytime sodium excretion were maximal with particulate matter with aerodynamic diameters<10 µm in exposures 2 to 5 days before. The associations of short-term increases in particulate matter with aerodynamic diameters<10 µm with higher nighttime blood pressure and blunted systolic blood pressure dipping were preceded by associations with reduced ability of the kidney to excrete sodium during daytime. The underlying mechanism linking air pollution to increased cardiovascular risk may include disturbed circadian rhythms of renal sodium handling and blood pressure.
Resumo:
In this study, the concentration and morphological characteristics of inhalable particulate material (PM10) were evaluated and associated with climatic conditions. The mean annual concentration was 11.0 µg m−3, varying between 0,647 µg m−3 and 36.8 µg m−3. Wind speed has a higher influence on PM10 dispersion, but direction was associated with particle source. During the wet period, wind speed is the main dispersion factor, while speed and direction both are important during the dry period. Based on the morphological characteristics, it is concluded that biogenic particles prevail during the rainy season and terrigenous particles during the dry period, depending on the wind direction and intensity.
Resumo:
Atmospheric pollutants can have serious impacts on the preservation of São Paulo's tangible cultural heritage. The purpose of this paper is to report the results of a monitoring campaign focussed on particulate matter (PM) that was conducted in three of the most important museums of the São Paulo megacity (Brazil): the Museu de Arqueologia e Etnologia (MAE-USP), the Museu Paulista (MP-USP), and the Pinacoteca do Estado de São Paulo (PE). These museums exhibit indoor PM and black carbon (BC) concentrations consistent with their urban locations and their specific methods for managing the indoor environment.
Resumo:
The extent to which airborne particles penetrate into the human respiratory system is determined mainly by their size, with possible health effects. The research over the scientific evidence of the role of airborne particles in adverse health effects has been intensified in recent years. In the present study, seasonal variations of PM10 and its relation with anthropogenic activities have been studied by using the data from UK National Air Quality Archive over Reading, UK. The diurnal variation of PM10 shows a morning peak during 7:00-10:00 LT and an evening peak during 19:00-22:00 LT. 3 The variation between 12:00 and 17:00 LT remains more or less steady for PM10 with the minimum value of similar to 16 mu g m(-3). PM10 and black smoke (BS) concentrations during weekdays were found to be high compared to weekends. A reduction in the concentration of PM10 has been found during the Christmas holidays compared to normal days during December. Seasonal variations of PM10 showed high values during spring compared to other seasons. A linear relationship has been found between PM10 and NO, during March, July, November and December suggesting that most of the PM10 is due to local traffic exhaust emissions. PM10 and SO2 concentrations showed positive correlation with the correlation coefficient of R-2 = 0.65 over the study area. Seasonal variations of SO2 and NOx showed high concentrations during winter and low concentrations during spring. Fraction of BS in PM10 has been found to be 50% during 2004 over the study area. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Recently, studies have shown that the classroom environment is very important for students' health and performance. Thus, the evaluation of indoor air quality (IAQ) in a classroom is necessary to ensure students' well-being. In this paper the emphasis is on airborne concentration of particulate matter (PM) in adult education rooms. The mass concentration of PM10 particulates was measured in two classrooms under different ventilation methods in the University of Reading, UK, during the winter period of 2008. In another study the measurement of the concentration of particles was accompanied with measurements of CO2 concentration in these classrooms but this study is the subject of another publication. The ambient PM10, temperature, relative humidity, wind speed and direction, and rainfall events were monitored as well. In general, this study showed that outdoor particle concentrations and outdoor meteorological parameters were identified as significant factors influencing indoor particle concentration levels. Ventilation methods showed significant effects on air change rate and on indoor/outdoor (I/O) concentration ratios. Higher levels of indoor particulates were seen during occupancy periods. I/O ratios were significantly higher when classrooms were occupied than when they were unoccupied, indicating the effect of both people presence and outdoor particle concentration levels. The concentrations of PM10 indoors and outdoors did not meet the requirements of WHO standards for PM10 annual average.