981 resultados para FIBRILLARY ACIDIC PROTEIN
Resumo:
Pericyte perivascular cells, believed to originate mesenchymal stem cells (MSC), are characterized by their capability to differentiate into various phenotypes and participate in tissue reconstruction of different organs, including the brain. We show that these cells can be induced to differentiation into neural-like phenotypes. For these studies, pericytes were obtained from aorta ex-plants of Sprague-Dawley rats and differentiated into neural cells following induction with trans retinoic acid (RA) in serum-free defined media or differentiation media containing nerve growth and brain-derived neuronal factor, B27, N2, and IBMX. When induced to differentiation with RA, cells express the pluripotency marker protein stage-specific embryonic antigen-1, neural-specific proteins beta 3-tubulin, neurofilament-200, and glial fibrillary acidic protein, suggesting that pericytes undergo differentiation, similar to that of neuroectodermal cells. Differentiated cells respond with intracellular calcium transients to membrane depolarization by KCl indicating the presence of voltage-gated ion channels and express functional N-methyl-D-aspartate receptors, characteristic for functional neurons. The study of neural differentiation of pericytes contributes to the understanding of induction of neuroectodermal differentiation as well as providing a new possible stem-cell source for cell regeneration therapy in the brain. (C) 2011 International Society for Advancement of Cytometry
Resumo:
Background: Brilliant blue G (BBG) is frequently used in chromovitrectomy to facilitate internal limiting membrane (ILM) peeling. A study was initiated to evaluate if heavy BBG is safe and effective in staining the ILM. Methods: We studied 30 eyes, 23 with idiopathic macular holes and 7 of patients with diabetic macular edema. Removal of the ILMs was assisted by heavy BBG staining. In cases with histopathological correlation the ILMs were evaluated with hematoxylin and eosin, Masson's trichrome, periodic acid-Schiff and glial fibrillary acidic protein staining. In addition, immunohistochemistry was also performed using specific antibodies for vimentin, neuron-specific enolase, factor VIII and CD68. Using the Image-Pro Plus software of Media Cybernetics Co. we found an average thickness in ILMs. Results: Of the ILM specimens sent, 19/30(63.33%) could not be processed properly because of the limited sample material, recognizing only fragments of dispersed fibrillar material. In macular hole ILMs we found an average thickness of 1.3 +/- 0.65 mu m, and in diabetic macular edema ILMs an average thickness of 6.2 +/- 1.4 mu m. Conclusions: In heavy BBG-assisted ILM peeling we observed no intraoperative or postoperative complications after a mean follow-up of 12 months. Heavy BBG could be an effective and safe vehicle for staining the ILM. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
PURPOSE. Vascular endothelial growth factor (VEGF) is an important signal protein in vertebrate nervous development, promoting neurogenesis, neuronal patterning, and glial cell growth. Bevacizumab, an anti-VEGF agent, has been extensively used for controlling pathological retinal neovascularization in adult and newborn patients, although its effect on the developing retina remains largely unknown. The purpose of this study was to investigate the effect of bevacizumab on cell death, proliferation, and differentiation in newborn rat retina. METHODS. Retinal explants of sixty 2-day-old Lister hooded rats were obtained after eye enucleation and maintained in culture media with or without bevacizumab for 2 days. Immunohistochemical staining was assessed against proliferating cell nuclear antigen (PCNA, to detect cell proliferation); caspase-3 and beclin-1 (to investigate cell death); and vimentin and glial fibrillary acidic protein (GFAP, markers of glial cells). Gene expressions were quantified by real-time reverse-transcription polymerase chain reaction. Results from treatment and control groups were compared. RESULTS. No significant difference in the staining intensity (on immunohistochemistry) of PCNA, caspase-3, beclin-1, and GFAP, or in the levels of PCNA, caspase-3, beclin-1, and vimentin mRNA was observed between the groups. However, a significant increase in vimentin levels and a significant decrease in GFAP mRNA expression were observed in bevacizumab-treated retinal explants compared with controls. CONCLUSIONS. Bevacizumab did not affect cell death or proliferation in early developing rat retina but appeared to interfere with glial cell maturation by increasing vimentin levels and downregulating GFAP gene expression. Thus, we suggest anti-VEGF agents be used with caution in developing retinal tissue. (Invest Ophthalmol Vis Sci. 2012;53:7904-7911) DOI:10.1167/iovs.12-10283
Resumo:
We evaluated the expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), ionized calcium binding adaptor protein-1 (Iba-1), and ferritin in rats after single or repeated lipopolysaccharide (LPS) treatment, which is known to induce endotoxin tolerance and glial activation. Male Wistar rats (200-250 g) received ip injections of LPS (100 µg/kg) or saline for 6 days: 6 saline (N = 5), 5 saline + 1 LPS (N = 6) and 6 LPS (N = 6). After the sixth injection, the rats were perfused and the brains were collected for immunohistochemistry. After a single LPS dose, the number of GFAP-positive cells increased in the hypothalamic arcuate nucleus (ARC; 1 LPS: 35.6 ± 1.4 vs control: 23.1 ± 2.5) and hippocampus (1 LPS: 165.0 ± 3.0 vs control: 137.5 ± 2.5), and interestingly, 6 LPS injections further increased GFAP expression in these regions (ARC = 52.5 ± 4.3; hippocampus = 182.2 ± 4.1). We found a higher GS expression only in the hippocampus of the 6 LPS injections group (56.6 ± 0.8 vs 46.7 ± 1.9). Ferritin-positive cells increased similarly in the hippocampus of rats treated with a single (49.2 ± 1.7 vs 28.1 ± 1.9) or repeated (47.6 ± 1.1 vs 28.1 ± 1.9) LPS dose. Single LPS enhanced Iba-1 in the paraventricular nucleus (PVN: 92.8 ± 4.1 vs 65.2 ± 2.2) and hippocampus (99.4 ± 4.4 vs 73.8 ± 2.1), but had no effect in the retrochiasmatic nucleus (RCA) and ARC. Interestingly, 6 LPS increased the Iba-1 expression in these hypothalamic and hippocampal regions (RCA: 57.8 ± 4.6 vs 36.6 ± 2.2; ARC: 62.4 ± 6.0 vs 37.0 ± 2.2; PVN: 100.7 ± 4.4 vs 65.2 ± 2.2; hippocampus: 123.0 ± 3.8 vs 73.8 ± 2.1). The results suggest that repeated LPS treatment stimulates the expression of glial activation markers, protecting neuronal activity during prolonged inflammatory challenges.
Resumo:
Sebbene il sistema nervoso enterico (“enteric nervous system”, ENS) svolga un ruolo cruciale nella patogenesi della Scrapie ovina, non esistono tuttavia in letteratura dati sulle popolazioni cellulari progressivamente coinvolte nel corso dell’infezione, né sugli eventuali danni morfo-funzionali da esse subiti. Il presente studio è stato condotto sui plessi mienterici e sottomucosi dell’ileo di 46 pecore di razza Sarda, recanti diversi polimorfismi del gene Prnp (ARQ/ARQ, ARQ/AHQ, ARQ/ARR, ARR/ARR). I suddetti animali, infettati per os all’età di 8 mesi con un ceppo di Scrapie precedentemente caratterizzato nel topo, sono stati sacrificati mediante eutanasia a determinati intervalli di tempo post-infezione (p.i.). E’ stata quindi valutata, tramite immunoistochimica ed immunofluorescenza indiretta su sezioni tissutali e su preparati “wholemount”, l’immunoreattività (IR) nei confronti della PrPSc, del “marker” panneuronale Hu C/D, dell’ossido-nitrico sintetasi (nNOS), della calbindina (CALB) e della proteina fibrillare acida gliale (GFAP). In 8 pecore con genotipo ARQ/ARQ, clinicamente sane e sacrificate a 12-24 mesi p.i., nonché in 5 ovini clinicamente affetti (2 con genotipo ARQ/ARQ, 3 con genotipo ARQ/AHQ), questi ultimi sacrificati rispettivamente a 24, 36 e 40 mesi p.i., le indagini immunoistochimiche hanno consentito di dimostrare la presenza di PrPSc a livello sia dell’encefalo (obex), sia dell’ENS, in particolar modo nei plessi mienterici. In tali distretti il deposito della PrPSc risultava pienamente compatibile con un interessamento delle cellule enterogliali (“enteroglial cells”, EGCs), mentre occasionalmente si notava un contestuale coinvolgimento della componente neuronale ivi residente. In conclusione, i dati della presente indagine consentono di ipotizzare un verosimile coinvolgimento delle EGCs e dei neuroni residenti a livello dei plessi dell’ENS nella patogenesi della Scrapie sperimentale realizzata per os in ovini di razza Sarda.
Resumo:
In den vergangenen Jahren konnten zahlreiche Studien die Veränderung des natürlichen Autoantikörperrepertoirs bei Glaukompatienten aufzeigen. Zu den Antigenen zählen verschiedenen Hitzeschockproteinen, aber ebenso neuronal assoziierte Strukturproteine wie das Myelin basische Protein (MBP) oder das sauren Gliafaserprotein und einige neuropyhsiologische Proteine aus der Retina und dem Sehnerven. Da bei den Glaukompatienten nicht einzelne Antikörperreaktionen verändert sind, sondern vielmehr komplexe Autoantikörpermuster vorliegen, bestand das primäre Ziel der Dissertation zu zeigen, ob eine systemische Immunisierung mit MBP, Homogenaten opticus-assoziierter Antigene (ONA) und Antigenen der retinalen Ganglienzellschicht (RGA) den Verlust von retinalen Ganglienzellen (RGZ) in einem Experimentellen Autoimmunen Glaukom (EAG) Tiermodell auslösen können. Die systemische Injektion von MBP, ONA oder RGA induzierten ophthalmopathologische Veränderungen in der Retina, gekennzeichnet durch retinalen Ganglienzellverlust mitsamt Zerstörung der Axone im Sehnerv. Unter der Annahme, dass die Neurodegeneration durch Autoantiköper vermittelt ist, wurde ebenfalls untersucht, ob sich die Antikörperreaktivität gegen okulare Strukturen oder den Sehnerv im Verlauf der Studie verändern. Getestet wurde die Antikörperreaktivität gegen Gewebsschnitte gesunder Tiere mit dem Ergebnis einer signifikanten und zeitabhängigen Zunahme der Immunreaktivität. Darüber hinaus war es erstmals möglich die Ablagerung von IgG Autoantikörpern in der Retina und dem Sehnerv nachzuweisen sowie die Caspase mediierte Apoptose zu untersuchen. Ebenfalls konnte die Verteilung von aktivierten Mikroglia im optischen System evaluiert werden, wobei diese mehrmals in Kolokalisation mit den IgG-Autoantikörpern auftraten. Diese Beobachtungen lassen den Schluss zu, dass die Immunreaktionen von Autoantikörpern alleine und im Zusammenspiel mit der Mikroglia im Zusammenhang mit der Neurodegeneration der retinalen Ganglienzelle im EAG Modell stehen könnten.
Resumo:
A 51-year-old Chinese man presented with gaze-evoked nystagmus, impaired smooth pursuit and vestibular ocular reflex cancellation, and saccadic dysmetria, along with a family history suggestive of late-onset autosomal dominant parkinsonism. MRI revealed abnormalities of the medulla and cervical spinal cord typical of adult-onset Alexander disease, and genetic testing showed homozygosity for the p.D295N polymorphic allele in the gene encoding the glial fibrillary acidic protein. A review of the literature shows that ocular signs are frequent in adult-onset Alexander disease, most commonly gaze-evoked nystagmus, pendular nystagmus, and/or oculopalatal myoclonus, and less commonly ptosis, miosis, and saccadic dysmetria. These signs are consistent with the propensity of adult-onset Alexander disease to cause medullary abnormalities on neuroimaging.
Resumo:
Abstract Purpose: To further evaluate the use of microbeam irradiation (MBI) as a potential means of non-invasive brain tumor treatment by investigating the induction of a bystander effect in non-irradiated tissue. Methods: Adult rats were irradiated with 35 or 350 Gy at the European Synchotron Research Facility (ESRF), using homogenous (broad beam) irradiation (HI) or a high energy microbeam delivered to the right brain hemisphere only. The proteome of the frontal lobes were then analyzed using two-dimensional electrophoresis (2-DE) and mass spectrometry. Results: HI resulted in proteomic responses indicative of tumourigenesis; increased albumin, aconitase and triosphosphate isomerase (TPI), and decreased dihydrolipoyldehydrogenase (DLD). The MBI bystander effect proteomic changes were indicative of reactive oxygen species mediated apoptosis; reduced TPI, prohibitin and tubulin and increased glial fibrillary acidic protein (GFAP). These potentially anti-tumourigenic apoptotic proteomic changes are also associated with neurodegeneration. However the bystander effect also increased heat shock protein (HSP) 71 turnover. HSP 71 is known to protect against all of the neurological disorders characterized by the bystander effect proteome changes. Conclusions: These results indicate that the collective interaction of these MBI-induced bystander effect proteins and their mediation by HSP 71, may confer a protective effect which now warrants additional experimental attention.
Resumo:
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, beta-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.
Resumo:
Objective:The aim of the study is to determine the neuroglial differentiation potential of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from preterm birth when compared to term delivery.Study Design:The WJ-MSCs from umbilical cords of preterm birth and term controls were isolated and induced into neural progenitors. The cells were analyzed for neuroglial markers by flow cytometry, real-time polymerase chain reaction, and immunocytochemistry. Results:Independent of gestational age, a subset of WJ-MSC displayed the neural progenitor cell markers Nestin and Musashi-1 and the mature neural markers microtubule-associated protein 2, glial fibrillary acidic protein, and myelin basic protein. Neuroglial induction of WJ-MSCs from term and preterm birth resulted in the enhanced transcription of Nestin and Musashi-1.Conclusions:Undifferentiated WJ-MSCs from preterm birth express neuroglial markers and can be successfully induced into neural progenitors similar to term controls. Their potential use as cellular graft in neuroregenerative therapy for peripartum brain injury in preterm birth has to be tested.
Resumo:
Spindle cell oncocytoma (SCO) is a recently described, rare neoplasm of the anterior pituitary. Clinically and radiologically simulating a non-functioning macroadenoma, its eponymous fusiform cells display a non-epithelial phenotype with conspicuous cytoplasmic accumulation of mitochondria. We report a case of SCO retrospectively identified in a biopsy specimen 16 years after transsphenoidal operation of a 48-year-old woman. Presenting symptoms were adynamia and transient decrease of visual acuity. Neuroimaging showed an isointense, enhancing, sellar-centered mass 1.8 cm in diameter without evidence of invasive growth. No postoperative adjuvant therapy was administered. The patient was left with panhypopituitarism, yet no recurrence was seen during follow-up. Initially diagnosed as a null cell adenoma of oncocytic type, repeat immunohistochemistry showed the characteristic coexpression of S100 protein, vimentin, and epithelial membrane antigen. Oncocytic granula stained intensely with antimitochondrial antibody 113-1, and were negative with the lysosomal marker CD68. Anterior pituitary hormones tested negative, and there was no evidence of neuroendocrine differentiation using antibodies to synaptophysin and chromogranin. Few cells stained for glial fibrillary acidic protein (GFAP). SCO has been proposed to represent a neoplasm of folliculo-stellate cells (FSCs). While the dynamic properties of the latter are incompletely characterized, and indeed no specific marker allows for their identification, overlapping features of SCO with look alikes, in particular pituicytoma, point to FSCs being a potential adult stem cell. The favorable outcome of the present case further argues for SCO to be considered a low-grade neoplasm. Moderate tumor size, lack of invasiveness, and low proliferation rate are likely predictors of benign behavior.
Resumo:
OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.
Resumo:
This study investigated the anatomical consequences of a photoreceptor toxin, iodoacetic acid (IAA), in the rabbit retina. Retinae were examined 2 weeks, 1, 3, and 6 months after systemic IAA injection. The retinae were processed using standard histological methods to assess the gross morphology and topographical distribution of damage, and by immunohistochemistry to examine specific cell populations in the retina. Degeneration was restricted to the photoreceptors and was most common in the ventral retina and visual streak. In damaged regions, the outer nuclear layer was reduced in thickness or eliminated entirely, with a concomitant loss of immunoreactivity for rhodopsin. However, the magnitude of the effect varied between animals with the same IAA dose and survival time, suggesting individual differences in the bioavailability of the toxin. In all eyes, the inner retina remained intact, as judged by the thickness of the inner nuclear layer, and by the pattern of immunoreactivity for protein kinase C-alpha (rod bipolar cells) and calbindin D-28 (horizontal cells). Müller cell stalks became immunoreactive for glial fibrillary acidic protein (GFAP) even in IAA-treated retinae that had no signs of cell loss, indicating a response of the retina to the toxin. However, no marked hypertrophy or proliferation of Müller cells was observed with either GFAP or vimentin immunohistochemistry. Thus the selective, long lasting damage to the photoreceptors produced by this toxin did not lead to a reorganization of the surviving cells, at least with survival as long as 6 months, in contrast to the remodeling of the inner retina that is observed in inherited retinal degenerations such as retinitis pigmentosa and retinal injuries such as retinal detachment.
Resumo:
An 8-year-old crossbred dog was presented with a one-month history of progressive weakness, respiratory impairment and abdominal distension. Surgical exploration revealed the presence of a splenic mass that infiltrated the mesentery and was adherent to the stomach and pancreas. The mass was composed of highly cellular areas of spindle-shaped cells arranged in interlacing bundles, streams, whorls and storiform patterns (Antoni A pattern) and less cellular areas with more loosely arranged spindle to oval cells (Antoni B pattern). The majority of neoplastic cells expressed vimentin, S-100 and glial fibrillary acidic protein (GFAP), but did not express desmin, alpha-smooth muscle actin or factor VIII. These morphological and immunohistochemical findings characterized the lesion as a malignant peripheral nerve sheath tumour (PNST). Primary splenic PNST has not been documented previously in the dog.
Resumo:
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson's disease.