990 resultados para FDG-PET intra-tratamiento
Resumo:
A delimitação precisa é crucial na RT. TC: informação anatómica, pobre na definição do envolvimento ganglionar; alguns tumores são praticamente invisíveis (p.e., esófago, fígado, baço e glândulas salivares), mapa de densidades electrónicas essencial para o cálculo. 18F-FDG PET: 1) mapeamento metabólico que permite alterar volumes alvo: BTV, elimina incertezas no GTV; 2) vantagens: estadiamento tumoral, predição da resposta tumoral, avaliação da resposta tumoral, detecção precoce da doença recorrente. PET/TC: maior precisão, menor variabilidade inter e intra-observador, menor erro no reposicionamento, adaptação à RT, ainda em Investigação Clínica.
Resumo:
Apresentamos uma lista de recomendações sobre a utilização de 18F-FDG PET em oncologia, no diagnóstico, estadiamento e detecção de recorrência ou progressão do câncer. Foi realizada pesquisa para identificar estudos controlados e revisões sistemáticas de literatura composta por estudos retrospectivos e prospectivos. As consequências e o impacto da 18F-FDG PET no manejo de pacientes oncológicos também foram avaliados. A 18F-FDG PET deve ser utilizada como ferramenta adicional aos métodos de imagem convencionais como tomografia computadorizada e ressonância magnética. Resultados positivos que sugiram alteração no manejo clínico devem ser confirmados por exame histopatológico. A 18F-FDG PET deve ser utilizada no manejo clínico apropriado para o diagnóstico de cânceres do sistema respiratório, cabeça e pescoço, sistema digestivo, mama, melanoma, órgão genitais, tireoide, sistema nervoso central, linfoma e tumor primário oculto.
Resumo:
Due to technical restrictions of the database system the title of the thesis does not show corretly on this page. Numbers in the title are in superscript. Please see the PDF-file for correct title. ---- Osteomyelitis is a progressive inflammatory disease of bone and bone marrow that results in bone destruction due to an infective microorganism, most frequently Staphylococcus aureus. Orthopaedic concern relates to the need for reconstructive and trauma-related surgical procedures in the fast grow¬ing population of fragile, aged patients, who have an increased susceptibility to surgical site infections. Depending on the type of osteomyelitis, infection may be acute or a slowly progressing, low-grade infection. Peri-implant infections lead to implant loosening. The emerging antibiotic resistance of com¬mon pathogens further complicates the situation. With current imaging methods, significant limitations exist in the diagnosing of osteomyelitis and implant-related infections. Positron emission tomography (PET) with a glucose analogue, 18F-fluoro¬deoxyglucose (18F-FDG), seems to facilitate a more accurate diagnosis of chronic osteomyelitis. The method is based on the increased glucose consumption of activated inflammatory cells. Unfortunately, 18F-FDG accumulates also in sterile inflammation regions and causes false-positive findings, for exam¬ple, due to post-operative healing processes. Therefore, there is a clinical need for new, more infection-specific tracers. In addition, it is still unknown why 18F-FDG PET imaging is less accurate in the detec¬tion of periprosthetic joint infections, most frequently due to Staphylococcus epidermidis. This doctoral thesis focused on testing novel PET tracers (68Ga-chloride and 68Ga-DOTAVAP-P1) for early detections of bone infections and evaluated the role of pathogen-related factors in the appli¬cations of 18F-FDG PET in the diagnostics of bone infections. For preclinical models of S. epidermidis and S. aureus bone/implant infections, the significance of the causative pathogen was studied with respect to 18F-FDG uptake. In a retrospective analysis of patients with confirmed bone infections, the significance of the presence or absence of positive bacterial cultures on 18F-FDG uptake was evalu¬ated. 18F-FDG and 68Ga-chloride resulted in a similar uptake in S. aureus osteomyelitic bones. However, 68Ga-chloride did not show uptake in healing bones, and therefore it may be a more-specific tracer in the early post-operative or post-traumatic phase. 68Ga-DOTAVAP-P1, a novel synthetic peptide bind¬ing to vascular adhesion protein 1 (VAP-1), was able to detect the phase of inflammation in healing bones, but the uptake of the tracer was elevated also in osteomyelitis. Low-grade peri-implant infec¬tions due to S. epidermidis were characterized by a low uptake of 18F-FDG, which reflects the virulence of the causative pathogen and the degree of leukocyte infiltration. In the clinical study, no relationship was found between the level of 18F-FDG uptake and the presence of positive or negative bacterial cul¬tures. Thus 18F-FDG PET may help to confirm metabolically active infection process in patients with culture-negative, histologically confirmed, low-grade osteomyelitis.
Resumo:
Colorectal cancer is the third most commonly diagnosed cancer, accounting for 53,219 deaths in 2007 and an estimated 146,970 new cases in the USA during 2009. The combination of FDG PET and CT has proven to be of great benefit for the assessment of colorectal cancer. This is most evident in the detection of occult metastases, particularly intra- or extrahepatic sites of disease, that would preclude a curative procedure or in the detection of local recurrence. FDG PET is generally not used for the diagnosis of colorectal cancer although there are circumstances where PET-CT may make the initial diagnosis, particularly with its more widespread use. In addition, precancerous adenomatous polyps can also be detected incidentally on whole-body images performed for other indications; sensitivity increases with increasing polyp size. False-negative FDG PET findings have been reported with mucinous adenocarcinoma, and false-positive findings have been reported due to inflammatory conditions such as diverticulitis, colitis, and postoperative scarring. Therefore, detailed evaluation of the CT component of a PET/CT exam, including assessment of the entire colon, is essential.
Resumo:
Dynamic positron emission tomography (PET) imaging can be used to track the distribution of injected radio-labelled molecules over time in vivo. This is a powerful technique, which provides researchers and clinicians the opportunity to study the status of healthy and pathological tissue by examining how it processes substances of interest. Widely used tracers include 18F-uorodeoxyglucose, an analog of glucose, which is used as the radiotracer in over ninety percent of PET scans. This radiotracer provides a way of quantifying the distribution of glucose utilisation in vivo. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue function. As the residue represents the amount of tracer remaining in the tissue, this can be thought of as a survival function; these functions been examined in great detail by the statistics community. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as ow, ux and volume of distribution. This thesis presents a Markov chain formulation of blood tissue exchange and explores how this relates to established compartmental forms. A nonparametric approach to the estimation of the residue is examined and the improvement in this model relative to compartmental model is evaluated using simulations and cross-validation techniques. The reference distribution of the test statistics, generated in comparing the models, is also studied. We explore these models further with simulated studies and an FDG-PET dataset from subjects with gliomas, which has previously been analysed with compartmental modelling. We also consider the performance of a recently proposed mixture modelling technique in this study.
Resumo:
Mestrado em Medicina Nuclear - Ramo de especialização: Tomografia por Emissão de Positrões
Resumo:
A 75-year-old man, with no significant symptoms, was referred after the incidental finding of a left hilar pulmonary mass of 30 × 30 × 50 mm on a chest CT. F-18 fluorodeoxyglucose (FDG) PET/CT demonstrated a heterogeneous, moderate radiotracer uptake in the mass (SUV 3.5 g/mL). Bronchoscopy revealed a discrete extrinsic compression of the superior bronchus without endobronchial lesion. Endobronchial fine-needle biopsies could not deliver a final diagnosis. The patient underwent upper lobectomy by thoracotomy. Histopathology revealed a benign intrapulmonary schwannoma. Although rare, intermediate FDG uptake in the settings of a pulmonary mass should include schwannoma in the differential diagnosis.
Resumo:
Aquest estudi té com a objectiu avaluar l’impacte de la PET-TC amb 18F-FDG en la planificació radioteràpica (PRT) en pacients amb carcinoma pulmonar, per la possible modificació en l’estadificació tumoral. Es van estudiar 33 pacients amb carcinoma de pulmó als que es va practicar una TC diagnòstica i una PET-TC d’estadificació i PRT. Es va comparar l’estadificació mitjançant ambdues tècniques i es van comptabilitzar els pacients exclosos per RT curativa. Finalment, la 18F-FDG PET-TC va permetre una millor estadificació dels pacients candidats a RT, excloent aquells no candidats per metàstasis no sospitades o per disminució de l’estadiatge.
Resumo:
INTRODUCTION Functional imaging studies of addiction following protracted abstinence have not been systematically conducted to look at the associations between severity of use of different drugs and brain dysfunction. Findings from such studies may be relevant to implement specific interventions for treatment. The aim of this study was to examine the association between resting-state regional brain metabolism (measured with 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and the severity of use of cocaine, heroin, alcohol, MDMA and cannabis in a sample of polysubstance users with prolonged abstinence from all drugs used. METHODS Our sample consisted of 49 polysubstance users enrolled in residential treatment. We conducted correlation analyses between estimates of use of cocaine, heroin, alcohol, MDMA and cannabis and brain metabolism (BM) (using Statistical Parametric Mapping voxel-based (VB) whole-brain analyses). In all correlation analyses conducted for each of the drugs we controlled for the co-abuse of the other drugs used. RESULTS The analysis showed significant negative correlations between severity of heroin, alcohol, MDMA and cannabis use and BM in the dorsolateral prefrontal cortex (DLPFC) and temporal cortex. Alcohol use was further associated with lower metabolism in frontal premotor cortex and putamen, and stimulants use with parietal cortex. CONCLUSIONS Duration of use of different drugs negatively correlated with overlapping regions in the DLPFC, whereas severity of cocaine, heroin and alcohol use selectively impact parietal, temporal, and frontal-premotor/basal ganglia regions respectively. The knowledge of these associations could be useful in the clinical practice since different brain alterations have been associated with different patterns of execution that may affect the rehabilitation of these patients.
Resumo:
BACKGROUND To compare outcomes for patients with recurrent or persistent papillary thyroid cancer (PTC) who had metastatic tumors that were fluorodeoxyglucose-positron emission tomography (FDG-PET) positive or negative, and to determine whether the FDG-PET scan findings changed the outcome of medical and surgical management. METHODS From a prospective thyroid cancer database, we retrospectively identified patients with recurrent or persistent PTC and reviewed data on demographics, initial stage, location and extent of persistent or recurrent disease, clinical management, disease-free survival and outcome. We further identified subsets of patients who had an FDG-PET scan or an FDG-PET/CT scan and whole-body radioactive iodine scans and categorized them by whether they had one or more FDG-PET-avid (PET-positive) lesions or PET-negative lesions. The medical and surgical treatments and outcome of these patients were compared. RESULTS Between 1984 and 2008, 41 of 141 patients who had recurrent or persistent PTC underwent FDG-PET (n = 11) or FDG-PET/CT scans (n = 30); 22 patients (54%) had one or more PET-positive lesion(s), 17 (41%) had PET-negative lesions, and two had indeterminate lesions. Most PET-positive lesions were located in the neck (55%). Patients who had a PET-positive lesion had a significantly higher TNM stage (P = 0.01), higher age (P = 0.03), and higher thyroglobulin (P = 0.024). Only patients who had PET-positive lesions died (5/22 vs. 0/17 for PET-negative lesions; P = 0.04). In two of the seven patients who underwent surgical resection of their PET-positive lesions, loco-regional control was obtained without evidence of residual disease. CONCLUSION Patients with recurrent or persistent PTC and FDG-PET-positive lesions have a worse prognosis. In some patients loco-regional control can be obtained without evidence of residual disease by reoperation if the lesion is localized in the neck or mediastinum.
Value of PET/CT versus contrast-enhanced CT in identifying chest wall invasion (T3) by NSCLC [B-671]
Resumo:
Purpose: To determine the diagnostic value of 18F-FDG PET/CT versus contrastenhanced CT in identifying chest wall invasion by NSCLC. Methods and Materials: The primary selection criterion was a peripheral tumor of any size with contact to the chest wall. A total of 25 patients with pathologically proven NSCLC satisfied these criteria. Chest wall invasion was interpreted upon PET/CT when a frank costal or intercostal 18F-FDG uptake was identified with or without concomitant morphologic alterations. On the other hand, the existence of periosteal rib reaction/erosion, chest wall thickening or obliteration of the pleural fat layer either separately or combined were considered essential diagnostic criteria for disease extension into the chest wall upon contrast-enhanced CT. The results were correlated with the final histological analysis. Results: Among the studied cohort, 13/25 (52%) patients had chest wall invasion consistent with T3 disease. Both PET/CT and contrast-enhanced CT successfully identified 12/13 (92%) of these patients. The single false-negative result was due to parietal pleural invasion. On the other hand, one false-positive result was encountered by PET/CT in a dyspneic patient; whereas, CT analysis revealed false-positive results in six patients. In these patients, periosteal rib reaction (n = 2) or asymmetric enlargement of adjacent chest wall muscles (n = 1) were identified along with an obliterated pleural fat layer (n = 6). The sensitivity, specificity, and accuracy of PET/CT and contrast-enhanced CT were 92, 91 and 92% versus 92, 50 and 72%. Conclusion: 18F-FDG PET/CT is an accurate diagnostic modality in identifying.
Resumo:
The diagnosis of focal status epilepticus (SE) can be challenging, particularly when clinical manifestations leave doubts about its nature, and electroencephalography (EEG) is not conclusive. This work addresses the utility of ictal (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) in focal SE, which was performed in eight patients in whom SE was finally diagnosed. Clinical, MRI and EEG data were reviewed. (18)F-FDG-PET proved useful: (1) to establish the diagnosis of focal SE, when clinical elements were equivocal or the EEG did not show clear-cut epileptiform abnormalities; (2) to delineate the epileptogenic area in view of possible resective surgery; and (3) when clinical features, MRI and EEG were incongruent regarding the origin of SE. We suggest that ictal (18)F-FDG-PET may represent a valuable diagnostic tool in selected patients with focal SE or frequent focal seizures.
Resumo:
Purpose: Cardiac 18F-FDG PET is considered as the gold standard to assess myocardial metabolism and infarct size. The myocardial demand for glucose can be influenced by fasting and/or following pharmacological preparation. In the rat, it has been previously shown that fasting combined with preconditioning with acipimox, a nicotinic acid derivate and lipidlowering agent, increased dramatically 18F-FDG uptake in the myocardium. Strategies aimed at reducing infarct scar are evaluated in a variety of mouse models. PET would particularly useful for assessing cardiac viability in the mouse. However, prior knowledge of the best preparation protocol is a prerequisite for accurate measurement of glucose uptake in mice. Therefore, we studied the effect of different protocols on 18F-FDG uptake in the mouse heart.Methods: Mice (n = 15) were separated into three treatment groups according to preconditioning and underwent a 18FDG PET scan. Group 1: No preconditioning (n = 3); Group 2: Overnight fasting (n = 8); and Group 3: Overnight fasting and acipimox (25mg/kg SC) (n = 4). MicroPET images were processed with PMOD to determine 18F-FDG mean standard uptake value (SUV) at 30 min for the whole left ventricle (LV) and for each region of the 17-segments AHA model. For comparisons, we used Mann-Whitney test and multilevel mixed-effects linear regression (Stata 11.0).Results: In total, 27 microPET were performed successfully in 15 animals. Overnight fasting led to a dramatic increase in LV-SUV compared to mice without preconditioning (8.6±0.7g/mL vs. 3.7±1.1g/mL, P<0.001). In addition, LV-SUV was slightly but not significantly higher in animals treated with acipimox compared to animals with overnight fasting alone (10.2±0.5 g/mL, P = 0.06). Fastening increased segmental SUV by 5.1±0.5g/mL as compared to free-feeding mice (from 3.7±0.8g/mL to 8.8±0.4g/mL, P<0.001); segmental-SUV also significantly increased after administration of acipimox (from 8.8±0.4g/mL to 10.1±0.4g/mL, P<0.001).Conclusion: Overnight fasting led to myocardial glucose deprivation and increases 18F-FDG myocardial uptake. Additional administration of acipimox enhances myocardial 18F-FDG uptake, at least at the segmental level. Thus, preconditioning with acipimox may provide better image quality that may help for assessing segmental myocardial metabolism.
Resumo:
Toperform a meta-analysis of FDG-PET performances in the diagnosis of largevessels vasculitis (Giant Cell Arteritis (GCA) associated or not withPolymyalgia Rheumatica(PMR), Takayasu). Materials and methods : The MEDLINE,Cochrane Library, Embase were searched for relevant original articlesdescribing FDG-PET for vasculitis assessment, using MesH terms ("GiantCell Arteritis or Vasculitis" AND "PET"). Criteria for inclusionwere:(1)FDG-PET for diagnosis of vasculitis(2)American College of Rheumatologycriteria as reference standard(3)control group. After data extraction, analyseswere performed using a random-effects model. Results : Of 184 citations(database search and references screening),70 articles were reviewed of which12 eligible studies were extracted (sensitivity range from 32% to 97%). 7studies fulfilled all inclusion criteria. Owing to overlapping population, 1study was excluded. Statistical heterogeneity justified the random-effectsmodel. Pooled 6 studies analysis(116 vasculitis,224 controls) showed a 81%sensitivity (95%CI:70-89%);a 89% specificity (95%CI:77-95%);a 85%PPV(95%CI:63-95%); a 90% NPV(95%CI:79-95%);a 7.1 positive LR(95%CI:3.4-14.9); a0.2 negative LR(95%CI:0.14-0.35) and 90.1 DOR(95%CI: 18.6-437). Conclusion :FDG-PET has good diagnostic performances in the detection of large vesselsvasculitis. Its promising role could be extended to follow up patients undertreatment, but further studies are needed to confirm this possibility.
Resumo:
In locally advanced cervical cancer, (18)F-fluorodeoxyglucose (FDG) positron emission tomography - computed tomography (PET/CT) has become important in the initial evaluation of disease extent. It is superior to other imaging modalities for lymph node status and distant metastasis. PET-defined cervical tumor volume predicts progression-free and overall survival. Higher FDG uptake in both primary and regional lymph nodes is strongly predictive of worse outcome. FDG-PET is useful for assessing treatment response 3 months after completing concurrent chemo-radiotherapy (CRT) and predicting long-term survival, and in suspected disease recurrence. In the era of image-guided adaptive radiotherapy, accurately defining disease areas is critical to avoid irradiating normal tissue. Based on additional information provided by FDG-PET, radiation treatment volumes can be modified and higher doses to FDG-positive lymph nodes safely delivered. FDG-PET/CT has been used for image-guided brachytherapy of FDG-avid tumor volume, while respecting low doses to bladder and rectum. Despite survival improvements due to CRT in cervical cancer, disease recurrences continue to be a major problem. Biological rationale exists for combining novel non-cytotoxic agents with CRT, and drugs targeting specific molecular pathways are under clinical development. The integration of these targeted therapies in clinical trials, and the need for accurate predictors of radio-curability is essential. New molecular imaging tracers may help identifying more aggressive tumors. (64)Cu-labeled diacetyl-di(N(4)-methylthiosemicarbazone) is taken up by hypoxic tissues, which may be valuable for prognostication and radiation treatment planning. PET/CT imaging with novel radiopharmaceuticals could further impact cervical cancer treatment as surrogate markers of drug activity at the tumor microenvironment level. The present article reviews the current and emerging role of PET/CT in the management of cervical cancer.