829 resultados para FATTY LIVER-DISEASE
Resumo:
Objective People with chronic liver disease, particularly those with decompensated cirrhosis, experience several potentially debilitating complications that can have a significant impact on activities of daily living and quality of life. These impairments combined with the associated complex treatment mean that they are faced with specific and high levels of supportive care needs. We aimed to review reported perspectives, experiences and concerns of people with chronic liver disease worldwide. This information is necessary to guide development of policies around supportive needs screening tools and to enable prioritisation of support services for these patients. Design Systematic searches of PubMed, MEDLINE, CINAHL and PsycINFO from the earliest records until 19 September 2014. Data were extracted using standardised forms. A qualitative, descriptive approach was utilised to analyse and synthesise data. Results The initial search yielded 2598 reports: 26 studies reporting supportive care needs among patients with chronic liver disease were included, but few of them were patient-reported needs, none used a validated liver disease-specific supportive care need assessment instrument, and only three included patients with cirrhosis. Five key domains of supportive care needs were identified: informational or educational (eg, educational material, educational sessions), practical (eg, daily living), physical (eg, controlling pruritus and fatigue), patient care and support (eg, support groups), and psychological (eg, anxiety, sadness). Conclusions While several key domains of supportive care needs were identified, most studies included hepatitis patients. There is a paucity of literature describing the supportive care needs of the chronic liver disease population likely to have the most needs—namely those with cirrhosis. Assessing the supportive care needs of people with chronic liver disease have potential utility in clinical practice for facilitating timely referrals to support services.
Resumo:
The advent of liver transplantation for end-stage liver disease (ESLD) in children has necessitated a major rethink in the preoperative preparation and management from simple palliative care to active directed intervention. This is particularly evident in the approach to the nutritional care of these patients with the historical understanding of the nutritional pertubations in ESLD being described from a single pediatric liver transplant center. ESLD in children is a hypermetabolic process adversely affecting nutritional status, metabolic, and non-metabolic body compartments. There is a complex dynamic process affecting metabolic activity within the metabolically active body cell mass, as well as lipid oxidation during fasting and at rest, with other factors operating in conjunction with daily activities. We have proposed that immediately ingested nutrients are a more important source of energy in patients with ESLD than in healthy children, among whom energy may be stored in various body compartments.
Resumo:
Background: Better understanding of body composition and energy metabolism in pediatric liver disease may provide a scientific basis for improved medical therapy aimed at achieving optimal nutrition, slowing progression to end-stage liver disease (ESLD), and improving the outcome of liver transplantation. Methods: Twenty-one children less than 2 years of age with ESLD awaiting liver transplantation and 15 healthy, aged-matched controls had body compartment analysis using a four compartment model (body cell mass, fat mass, extracellular water, and extracellular solids). Subjects also had measurements of resting energy expenditure (REE) and respiratory quotient (RQ) by indirect calorimetry. Nine patients and 15 control subjects also had measurements of total energy expenditure (TEE) using doubly labelled water. Results: Mean weights and heights were similar in the two groups. Compared with control subjects, children with ESLD had higher relative mean body cell mass (33 ± 2% vs 29 ± 1% of body weight, P < 0.05), but had similar fat mass, extracellular water, and extracellular solid compartments (18% vs 20%, 41% vs 38%, and 7% vs 13% of body weight respectively). Compared with control subjects, children with ESLD had 27% higher mean REE/body weight (0.285 ± 0.013 vs 0.218. ± 0.013 mJ/kg/24h, P < 0.001), 16% higher REE/unit cell mass (P < 0.05); and lower mean RQ (P < 0.05). Mean TEE of patients was 4.70 ± 0.49 mJ/24h vs 3.19 ± 0.76 in controls, (P < 0.01). Conclusions: In children, ESLD is a hypermetabolic state adversely affecting the relationship between metabolic and non-metabolic body compartments. There is increased metabolic activity within the body cell mass with excess lipid oxidation during fasting and at rest. These findings have implications for the design of appropriate nutritional therapy.
Resumo:
Malnutrition is a common problem in children with end-stage liver disease (ESLD), and accurate assessment of nutritional status is essential in managing these children. In a retrospective study, we compared nutritional assessment by anthropometry with that by body composition. We analyzed all consecutive measurements of total body potassium (TBK, n = 186) of children less than 3 years old with ESLD awaiting transplantation found in our database. The TBK values obtained by whole body counting of 40K were compared with reference TRK values of healthy children. The prevalence of malnutrition, as assessed by weight (weight Z score < -2) was 28%, which was significantly lower (chi-square test, p < 0.0001) than the prevalence of malnutrition (76%) assessed by TBK (< 90% of expected TRK for age). These results demonstrated that body weight underestimated the nutritional deficit and stressed the importance of measuring body composition as part of assessing nutritional status of children with ESLD.
Resumo:
Background: The success of orthotopic liver transplantation as treatment for end-stage liver disease has prompted investigation of strategies to maintain or improve nutrition and growth in children awaiting transplantation, because malnutrition is an adverse prognostic factor. The purpose of this study was to evaluate the effect of recombinant human growth hormone therapy on body composition and indices of liver function in patients awaiting transplant. Methods: The study was designed as a placebo- controlled, double-blind, crossover trial. Patients received 0.2 U/kg growth hormone, subcutaneously, or placebo daily for 28 days during two treatment periods, separated by a 2-week washout period. Ten patients (mean age, 3.06 ± 1.15 years; range, 0.51-11.65 years, five men), with extrahepatic biliary atresia (n = 8) or two with Alagille's syndrome (n = 2), with end-stage liver disease, completed the trial while awaiting orthotopic liver transplantation. Height, weight, total body potassium, total body fat, resting energy expenditure, respiratory quotient, hematologic and multiple biochemical profile, number of albumin infusions, insulin-like growth factor-1 and 1, growth hormone binding protein (GHBP), and insulin-like growth factor binding protein-1 (IGFBP-1) and insulin-like growth factor binding protein (IGFBP-3) were measured at the beginning and end of each treatment period. Results: Growth hormone treatment was associated with a significant decline in serum bilirubin (-34.6 ± 16.5 μmol/l vs. 18.2 ± 11.59 μmol/l; p < 0.02) but there was no significant effect on any anthropometric or body composition measurements, or on any biochemical or hematologic parameters. Conclusions: These children with end-stage liver disease displayed growth hormone resistance, particularly in relation to the somatomedin axis. Exogenous growth hormone administration may be of limited value in these patients
Resumo:
Malnutrition is common in children with end-stage liver disease (ESLD) awaiting orthotopic liver transplantation (OLT), and nutritional support is assuming an important role in preoperative management. To evaluate preoperative nutritional therapy, 19 children (median age 1.25 y) with ESLD awaiting OLT were prospectively studied. Two high-energy, isoenergetic and isonitrogenous nutritional formulations delivered nasogastrically were compared: a branched-chain amino acid (BCAA)-enriched semielemental formulation and a matched standard semielemental formulation. Twelve of 19 patients completed a randomized controlled study before OLT and 10 of 19 completed a full crossover study. Improvements in weight and height occurred during the BCAA supplements, with no statistical change on the standard formulation. Significant increases in total body potassium, midupper arm circumference, and subscapular skinfold thickness occurred during the BCAA supplements, whereas no significant changes occurred during the standard formulation period. Significantly fewer albumin infusions were required during the BCAA supplement. These findings suggest that BCAA-enriched formulas have advantages over standard semielemental formulas in improving nutritional status in children with ESLD. and are deserving of wider application and study.
Resumo:
The nutritional profiles of 37 children (aged 0.5-14.0 years) with chronic liver disease at the time of acceptance for orthotopic liver transplantation (OLTP) have been evaluated using clinical, biochemical and body composition methods. Nutritional progress while waiting for a donor has been related to outcome, whether transplanted or not. At the time of acceptance, most children were underweight (mean standard deviation (s.d.) weight = -1.4 ± 0.2) and stunted (mean s.d. height = - 2.2 ± 0.4), had low serum albumin (27/35) and had reduced body fat and depleted body cell mass (measured by total body potassium - mean % expected for age = 58 ± 5%, n = 15). Mean ad libitum nutrient intake was 63 ± 5% of recommended daily intake (RDI). Those who died while waiting (n = 8) had significantly lower mean initial s.d. weight compared with those transplanted. The overall actuarial 1 year survival of those who were transplanted (mean waiting time = 75 days) was 81% but those who were initially well nourished (s.d. weight >-1.0) had an actuarial 1 year survival of 100%. There were no significant differences in actuarial survival in relationship to age, type of transplant (whole liver or segmental), liver biochemistry or the presence or absence of ascites. Of the total group accepted for OLTP, whether transplanted or not, the overall 1 year survival for those who were relatively well nourished was 88% and for those undernourished (initial s.d. weight <-1.0) was 38% (P<0.003). Declining nutritional status during the waiting period also adversely affected outcome. We conclude that malnutrition and/or declining nutritional status is a major factor adversely affecting survival in children awaiting OLTP. In transplant units where waiting time is greater than 40 days, earlier referral, prioritization of cases and the use of adult donor livers may reduce this risk and efforts to maintain or improve nutritional status deserve further study.
Resumo:
Pre-operative nutritional support was studied in 28 children with end-stage liver disease awaiting orthotopic liver transplantation. Nasogastric supplemental administration of a standard semi-elemental enteral nutritional formula was compared with a similar formula enriched with branched chain amino acids, and with a group receiving oral nutrition only. The duration of treatment in all groups was similar (mean 90 days). Energy intakes in the supplemented groups were 120-150% of recommended daily intakes (RDI), whereas ad libitum intakes in the oral group ranged 58-100% RDI. A significant improvement in mean Z-score for body weight (denoting catch-up) was noted only in those children who received nasogastric supplements enriched with branched-chain amino acids. The standard enterally-fed group maintained their body weight and Z-scores did not change significantly. In contrast, body weight Z-scores in those fed orally declined significantly. Nutritional supportive therapy of malnourished children with end-stage liver disease can minimize or improve nutritional status in children awaiting liver transplantation. The use of nutritional formulae rich in branche-chain amino acids may have nutritional advantages in children with chronic liver disease which require further study and evaluation.
Resumo:
Introduction: The epidemic of obesity has been accompanied by an increase in the prevalence of the metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). However, not all obese subjects develop these metabolic abnormalities. Hepatic fat accumulation is related to hepatic insulin resistance, which in turn leads to hyperglycemia, hypertriglyceridemia, and a low HDL cholesterol con-centration. The present studies aimed to investigate 1) how intrahepatic as compared to intramyocellular fat is related to insulin resistance in these tissues and to the metabolic syndrome (Study I); 2) the amount of liver fat in subjects with and without the metabolic syndrome, and which clinically available markers best reflect liver fat content (Study II); 3) the effect of liver fat on insulin clearance (Study III); 4) whether type 2 diabetic patients have more liver fat than age-, gender-, and BMI-matched non-diabetic subjects (Study IV); 5) how type 2 diabetic patients using exceptionally high doses of insulin respond to addition of a PPARγ agonist (Study V). Subjects and methods: The study groups consisted of 45 (Study I), 271 (Study II), and 80 (Study III) non-diabetic subjects, and of 70 type 2 diabetic patients and 70 matched control subjects (Study IV). In Study V, a total of 14 poorly controlled type 2 diabetic patients treated with high doses of insulin were studied before and after rosiglitazone treatment (8 mg/day) for 8 months. In all studies, liver fat content was measured by proton magnetic resonance spectroscopy, and sub-cutaneous and intra-abdominal fat content by MRI. In addition, circulating markers of insulin resistance and serum liver enzyme concentrations were determined. Hepatic (i.v. insulin infusion rate 0.3 mU/kg∙min combined with [3-3H]glucose, Studies I, III, and V) and muscle (1.0 mU/kg min, Study I) insulin sensitivities were measured by the euglycemic hyperinsulinemic clamp technique. Results: Fat accumulation in the liver rather than in skeletal muscle was associated with features of insulin resistance, i.e. increased fasting serum (fS) triglycerides and decreased fS-HDL cholesterol, and with hyperinsulinemia and low adiponectin concentrations (Study I). Liver fat content was 4-fold higher in subjects with as compared to those without the metabolic syndrome, independent of age, gender, and BMI. FS-C-peptide was the best correlate of liver fat (Study II). Increased liver fat was associated with both impaired insulin clearance and hepatic insulin resistance independent of age, gender, and BMI (Study III). Type 2 diabetic patients had 80% more liver fat than age-, weight-, and gender-matched non-diabetic subjects. At any given liver fat content, S-ALT underestimated liver fat in the type 2 diabetic patients as compared to the non-diabetic subjects (Study IV). In Study V, hepatic insulin sensitivity increased and glycemic control improved significantly during rosiglitazone treatment. This was associated with lowering of liver fat (on the average by 46%) and insulin requirements (40%). Conclusions: Liver fat is increased both in the metabolic syndrome and type 2 diabetes independent of age, gender, and BMI. A fatty liver is associated with both hepatic insulin resistance and impaired insulin clearance. Rosi-glitazone may be particularly effective in type 2 diabetic patients who are poorly controlled despite using high insulin doses.
Resumo:
BACKGROUND: Obesity is closely associated with insulin resistance, which is a pathophysiologic condition contributing to the important co-morbidities of obesity, such as the metabolic syndrome and type 2 diabetes mellitus. In obese subjects, adipose tissue is characterized by inflammation (macrophage infiltration, increased expression insulin resistance genes and decreased expression of insulin sensitivity genes). Increased liver fat, without excessive alcohol consumption, is defined as non-alcoholic fatty liver disease (NAFLD) and also associated with obesity and insulin resistance. It is unknown whether and how insulin resistance is associated with altered expression of adipocytokines (adipose tissue-derived signaling molecules), and whether adipose tissue inflammation and NAFLD coexist independent of obesity. Genetic factors could explain variation in liver fat independent of obesity but the heritability of NAFLD is unknown. AIMS: To determine whether acute regulation of adipocytokine expression by insulin in adipose tissue is altered in obesity. To investigate the relationship between adipose tissue inflammation and liver fat content independent of obesity. To assess the heritability of serum alanine aminotransferase (ALT) activity, a surrogate marker of liver fat. METHODS: 55 healthy normal-weight and obese volunteers were recruited. Subcutaneous adipose tissue biopsies were obtained for measurement of gene expression before and during 6 hours of euglycemic hyperinsulinemia. Liver fat content was measured by proton magnetic resonance spectroscopy, and adipose tissue inflammation was assessed by gene expression, immunohistochemistry and lipidomics analysis. Genetic factors contributing to serum ALT activity were determined in 313 twins by statistical heritability modeling. RESULTS: During insulin infusion the expression of insulin sensitivity genes remains unchanged, while the expression of insulin resistance genes increases in obese/insulin-resistant subjects compared to insulin-sensitive subjects. Adipose tissue inflammation is associated with liver fat content independent of obesity. Adipose tissue of subjects with high liver fat content is characterized infiltrated macrophages and increased expression of inflammatory genes, as well as by increased concentrations of ceramides compared to equally obese subjects with normal liver fat. A significant heritability for serum ALT activity was verified. CONCLUSIONS: Effects of insulin infusion on adipose tissue gene expression in obese/insulin-resistant subjects are not only characterized by hyporesponse of insulin sensitivity genes but also by hyperresponse of insulin resistance and inflammatory genes. This suggests that in obesity, the impaired insulin action contributes or self-perpetuates alterations in adipocytokine expression in adipose tissue. Adipose tissue inflammation is increased in subjects with high liver fat compared to equally obese subjects with normal liver fat content. Concentrations of ceramides, the putative mediators of insulin resistance, are increased in adipose tissue in subjects with high liver fat. Genetic factors contribute significantly to variation in serum ALT activity, a surrogate marker of liver fat. These data imply that adipose tissue inflammation and increased liver fat content are closely interrelated, and determine insulin resistance even independent of obesity.
Resumo:
To investigate whether aberrant hypermethylation in plasma DNA could be used as diagnosis makers for hepatocellular carcinoma (HCC), we performed methylation-specific PCR (MSP) to check the methylation status of five tumor associated genes in 36 cases of
Resumo:
Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome that typically develops as a result of acute liver failure or chronic liver disease. Brain edema is a common feature associated with HE. In acute liver failure, brain edema contributes to an increase in intracranial pressure, which can fatally lead to brain stem herniation. In chronic liver disease, intracranial hypertension is rarely observed, even though brain edema may be present. This discrepancy in the development of intracranial hypertension in acute liver failure versus chronic liver disease suggests that brain edema plays a different role in relation to the onset of HE. Furthermore, the pathophysiological mechanisms involved in the development of brain edema in acute liver failure and chronic liver disease are dissimilar. This review explores the types of brain edema, the cells, and pathogenic factors involved in its development, while emphasizing the differences in acute liver failure versus chronic liver disease. The implications of brain edema developing as a neuropathological consequence of HE, or as a cause of HE, are also discussed.
Resumo:
The pathogenesis of brain edema in patients with chronic liver disease (CLD) and minimal hepatic encephalopathy (HE) remains undefined. This study evaluated the role of brain lactate, glutamine and organic osmolytes, including myo-inositol and taurine, in the development of brain edema in a rat model of cirrhosis.Six-week bile-duct ligated (BDL) rats were injected with (13)C-glucose and de novo synthesis of lactate, and glutamine in the brain was quantified using (13)C nuclear magnetic resonance spectroscopy (NMR). Total brain lactate, glutamine, and osmolytes were measured using (1)H NMR or high performance liquid chromatography. To further define the interplay between lactate, glutamine and brain edema, BDL rats were treated with AST-120 (engineered activated carbon microspheres) and dichloroacetate (DCA: lactate synthesis inhibitor).Significant increases in de novo synthesis of lactate (1.6-fold, p<0.001) and glutamine (2.2-fold, p<0.01) were demonstrated in the brains of BDL rats vs. SHAM-operated controls. Moreover, a decrease in cerebral myo-inositol (p<0.001), with no change in taurine, was found in the presence of brain edema in BDL rats vs. controls. BDL rats treated with either AST-120 or DCA showed attenuation in brain edema and brain lactate. These two treatments did not lead to similar reductions in brain glutamine.Increased brain lactate, and not glutamine, is a primary player in the pathogenesis of brain edema in CLD. In addition, alterations in the osmoregulatory response may also be contributing factors. Our results suggest that inhibiting lactate synthesis is a new potential target for the treatment of HE.
Resumo:
Steatosis is diagnosed on the basis of the macroscopic aspect of the liver evaluated by the surgeon at the time of organ extraction or by means of a frozen biopsy. In the present study, the applicability of laser-induced fluorescence (LIF) spectroscopy was investigated as a method for the diagnosis of different degrees of steatosis experimentally induced in rats. Rats received a high-lipid diet for different periods of time. The animals were divided into groups according to the degree of induced steatosis diagnosis by histology. The concentration of fat in the liver was correlated with LIF by means of the steatosis fluorescence factor (SFF). The histology classification, according to liver fat concentration was, Severe Steatosis, Moderate Steatosis, Mild Steatosis and Control (no liver steatosis). Fluorescence intensity could be directly correlated with fat content. It was possible to estimate an average of fluorescence intensity variable by means of different confidence intervals (P=95%) for each steatosis group. SFF was significantly higher in the Severe Steatosis group (P < 0.001) compared with the Moderate Steatosis, Mild Steatosis and Control groups. The various degrees of steatosis could be directly correlated with SFF. LIF spectroscopy proved to be a method capable of identifying the degree of hepatic steatosis in this animal model, and has the potential of clinical application for non-invasive evaluation of the degree of steatosis.