983 resultados para F1
Resumo:
The F1 part of the F1FO ATP synthase from Escherichia coli has been crystallized and its structure determined to 4.4-Å resolution by using molecular replacement based on the structure of the beef-heart mitochondrial enzyme. The bacterial F1 consists of five subunits with stoichiometry α3, β3, γ, δ, and ɛ. δ was removed before crystallization. In agreement with the structure of the beef-heart mitochondrial enzyme, although not that from rat liver, the present study suggests that the α and β subunits are arranged in a hexagonal barrel but depart from exact 3-fold symmetry. In the structures of both beef heart and rat-liver mitochondrial F1, less than half of the structure of the γ subunit was seen because of presumed disorder in the crystals. The present electron-density map includes a number of rod-shaped features which appear to correspond to additional α-helical regions within the γ subunit. These suggest that the γ subunit traverses the full length of the stalk that links the F1 and FO parts and makes significant contacts with the c subunit ring of FO.
Resumo:
Bacteriophage T7 DNA helicase is a ring-shaped hexamer that catalyzes duplex DNA unwinding using dTTP hydrolysis as an energy source. Of the six potential nucleotide binding sites on the hexamer, we have found that three are noncatalytic sites and three are catalytic sites. The noncatalytic sites bind nucleotides with a high affinity, but dTTPs bound to these sites do not dissociate or hydrolyze through many dTTPase turnovers at the catalytic sites. The catalytic sites show strong cooperativity which leads to sequential binding and hydrolysis of dTTP. The elucidated dTTPase mechanism of the catalytic sites of T7 helicase is remarkably similar to the binding change mechanism of the ATP synthase. Based on the similarity, a general mechanism for hexameric helicases is proposed. In this mechanism, an F1-ATPase-like rotational movement around the single-stranded DNA, which is bound through the central hole of the hexamer, is proposed to lead to unidirectional translocation along single-stranded DNA and duplex DNA unwinding.
Resumo:
Length change mutation at the Ms6hm hypervariable mouse minisatellite locus was analyzed in C57BL/6N × C3H/HeN F1 mice and the F1 of the reciprocal cross born to irradiated male parents. Spontaneous mutant frequencies were 8.4% and 9.8% for the paternally derived and maternally derived C3H/HeN alleles, respectively. The mutant frequencies for the paternally derived allele increased to 22% and 19% when the male parents were irradiated with 6 Gy at the postmeiotic spermatozoa stage and the spermatogonia stage, respectively. These increases in the mutant frequency were at least 10 to 100 times higher than those expected from the frequency of hits to the 3- to 4-kb allele, suggesting that the length change mutation at this minisatellite locus was not a targeted event due directly to DNA damage in the region. Further analysis demonstrated that the mutant frequency increased also at the maternally derived C3H/HeN allele to 20% when the male parents were irradiated at the spermatozoa stage. This increase in the maternal allele mutation was not observed in F1 born to irradiated spermatogonia. The present study suggests that introduction of DNA damage by irradiated sperm triggers genomic instability in zygotes and in embryos of subsequent developmental stages, and this genomic instability induces untargeted mutation in cis at the paternally derived minisatellite allele and in trans at the maternally derived unirradiated allele. Untargeted mutation revealed in the present study defines a previously unnoticed genetic hazard to the maternally derived genome by the paternally introduced DNA damage.
Resumo:
Angiostatin blocks tumor angiogenesis in vivo, almost certainly through its demonstrated ability to block endothelial cell migration and proliferation. Although the mechanism of angiostatin action remains unknown, identification of F1-FO ATP synthase as the major angiostatin-binding site on the endothelial cell surface suggests that ATP metabolism may play a role in the angiostatin response. Previous studies noting the presence of F1 ATP synthase subunits on endothelial cells and certain cancer cells did not determine whether this enzyme was functional in ATP synthesis. We now demonstrate that all components of the F1 ATP synthase catalytic core are present on the endothelial cell surface, where they colocalize into discrete punctate structures. The surface-associated enzyme is active in ATP synthesis as shown by dual-label TLC and bioluminescence assays. Both ATP synthase and ATPase activities of the enzyme are inhibited by angiostatin as well as by antibodies directed against the α- and β-subunits of ATP synthase in cell-based and biochemical assays. Our data suggest that angiostatin inhibits vascularization by suppression of endothelial-surface ATP metabolism, which, in turn, may regulate vascular physiology by established mechanisms. We now have shown that antibodies directed against subunits of ATP synthase exhibit endothelial cell-inhibitory activities comparable to that of angiostatin, indicating that these antibodies function as angiostatin mimetics.