995 resultados para Extended Karplus equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CDIO Initiative has been globally recognised as an enabler for engineering education reform. With the CDIO process, the CDIO Standards and the CDIO Syllabus, many scholarly contributions have been made around cultural change, curriculum reform and learning environments. In the Australasian region, reform is gaining significant momentum within the engineering education community, the profession, and higher education institutions. This paper presents the CDIO Syllabus cast into the Australian context by mapping it to the Engineers Australia Graduate Attributes, the Washington Accord Graduate Attributes and the Queensland University of Technology Graduate Capabilities. Furthermore, in recognition that many secondary schools and technical training institutions offer introductory engineering technology subjects, this paper presents an extended self-rating framework suited for recognising developing levels of proficiency at a preparatory level. The framework is consistent with conventional application to undergraduate programs and professional practice, but adapted for the preparatory context. As with the original CDIO framework with proficiency levels, this extended framework is informed by Bloom’s Educational Objectives. A proficiency evaluation of Queensland Study Authority’s Engineering Technology senior syllabus is demonstrated indicating proficiency levels embedded within this secondary school subject within a preparatory scope. Through this extended CDIO framework, students and faculty have greater awareness and access to tools to promote (i) student engagement in their own graduate capability development, (ii) faculty engagement in course and program design, through greater transparency and utility of the continuum of graduate capability development with associate levels of proficiency, and the context in which they exist in terms of pre-tertiary engineering studies; and (iii) course maintenance and quality audit methodology for the purpose of continuous improvement processes and program accreditation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: In an effort to examine the decreasing oral health trend of Australian dental patients, the Health Belief Model (HBM) was utilised to understand the beliefs underlying brushing and flossing self-care. The HBM states that perception of severity and susceptibility to inaction and an estimate of the barriers and benefits of behavioural performance influences people’s health behaviours. Self-efficacy, confidence in one’s ability to perform oral self-care, was also examined. Methods: In dental waiting rooms, a community sample (N = 92) of dental patients completed a questionnaire assessing HBM variables and self-efficacy, as well as their performance of the oral hygiene behaviours of brushing and flossing. Results: Partial support only was found for the HBM with barriers emerging as the sole HBM factor influencing brushing and flossing behaviours. Self-efficacy significantly predicted both oral hygiene behaviours also. Conclusion: Support was found for the control factors, specifically a consideration of barriers and self-efficacy, in the context of understanding dental patients’ oral hygiene decisions. Practice implications: Dental professionals should encourage patients’ self-confidence to brush and floss at recommended levels and discuss strategies that combat barriers to performance, rather than emphasising the risks of inaction or the benefits of oral self-care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix function approximation is a current focus of worldwide interest and finds application in a variety of areas of applied mathematics and statistics. In this thesis we focus on the approximation of A^(-α/2)b, where A ∈ ℝ^(n×n) is a large, sparse symmetric positive definite matrix and b ∈ ℝ^n is a vector. In particular, we will focus on matrix function techniques for sampling from Gaussian Markov random fields in applied statistics and the solution of fractional-in-space partial differential equations. Gaussian Markov random fields (GMRFs) are multivariate normal random variables characterised by a sparse precision (inverse covariance) matrix. GMRFs are popular models in computational spatial statistics as the sparse structure can be exploited, typically through the use of the sparse Cholesky decomposition, to construct fast sampling methods. It is well known, however, that for sufficiently large problems, iterative methods for solving linear systems outperform direct methods. Fractional-in-space partial differential equations arise in models of processes undergoing anomalous diffusion. Unfortunately, as the fractional Laplacian is a non-local operator, numerical methods based on the direct discretisation of these equations typically requires the solution of dense linear systems, which is impractical for fine discretisations. In this thesis, novel applications of Krylov subspace approximations to matrix functions for both of these problems are investigated. Matrix functions arise when sampling from a GMRF by noting that the Cholesky decomposition A = LL^T is, essentially, a `square root' of the precision matrix A. Therefore, we can replace the usual sampling method, which forms x = L^(-T)z, with x = A^(-1/2)z, where z is a vector of independent and identically distributed standard normal random variables. Similarly, the matrix transfer technique can be used to build solutions to the fractional Poisson equation of the form ϕn = A^(-α/2)b, where A is the finite difference approximation to the Laplacian. Hence both applications require the approximation of f(A)b, where f(t) = t^(-α/2) and A is sparse. In this thesis we will compare the Lanczos approximation, the shift-and-invert Lanczos approximation, the extended Krylov subspace method, rational approximations and the restarted Lanczos approximation for approximating matrix functions of this form. A number of new and novel results are presented in this thesis. Firstly, we prove the convergence of the matrix transfer technique for the solution of the fractional Poisson equation and we give conditions by which the finite difference discretisation can be replaced by other methods for discretising the Laplacian. We then investigate a number of methods for approximating matrix functions of the form A^(-α/2)b and investigate stopping criteria for these methods. In particular, we derive a new method for restarting the Lanczos approximation to f(A)b. We then apply these techniques to the problem of sampling from a GMRF and construct a full suite of methods for sampling conditioned on linear constraints and approximating the likelihood. Finally, we consider the problem of sampling from a generalised Matern random field, which combines our techniques for solving fractional-in-space partial differential equations with our method for sampling from GMRFs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small element spacing in compact arrays results in strong mutual coupling between the array elements. A decoupling network consisting of reactive cross-coupling elements can alleviate problems associated with the coupling. Closed-form design equations for the decoupling networks of symmetrical arrays with two or three elements are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the lack of elaborate governance mechanisms is often seen as the main reason for failures of SOA projects, SOA governance is still very low in maturity. In this paper, we follow a design science approach to address this drawback by presenting a framework that can guide organisations in implementing a governance approach for SOA more successfully. We have reviewed the highly advanced IT governance frameworks Cobit and ITIL and mapped them to the SOA domain. The resulting blueprint for an SOA governance framework was refined based on a detailed literature review, expert interviews and a practical application in a government organisation. The proposed framework stresses the need for business representatives to get involved in SOA decisions and to define benefits ownership for services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper firstly presents an extended ambiguity resolution model that deals with an ill-posed problem and constraints among the estimated parameters. In the extended model, the regularization criterion is used instead of the traditional least squares in order to estimate the float ambiguities better. The existing models can be derived from the general model. Secondly, the paper examines the existing ambiguity searching methods from four aspects: exclusion of nuisance integer candidates based on the available integer constraints; integer rounding; integer bootstrapping and integer least squares estimations. Finally, this paper systematically addresses the similarities and differences between the generalized TCAR and decorrelation methods from both theoretical and practical aspects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With a view to assessing the vulnerability of columns to low elevation vehicular impacts, a non-linear explicit numerical model has been developed and validated using existing experimental results. The numerical model accounts for the effects of strain rate and confinement of the reinforced concrete, which are fundamental to the successful prediction of the impact response. The sensitivity of the material model parameters used for the validation is also scrutinised and numerical tests are performed to examine their suitability to simulate the shear failure conditions. Conflicting views on the strain gradient effects are discussed and the validation process is extended to investigate the ability of the equations developed under concentric loading conditions to simulate flexural failure events. Experimental data on impact force–time histories, mid span and residual deflections and support reactions have been verified against corresponding numerical results. A universal technique which can be applied to determine the vulnerability of the impacted columns against collisions with new generation vehicles under the most common impact modes is proposed. Additionally, the observed failure characteristics of the impacted columns are explained using extended outcomes. Based on the overall results, an analytical method is suggested to quantify the vulnerability of the columns.