265 resultados para Expoente de Avrami
Resumo:
The isothermal and non-isothermal melt-crystallization kinetics of nylon 1212 were investigated by differential scanning calorimetry. Primary and secondary crystallization behaviors were analysed based on different approaches. The results obtained suggested that primary crystallization under isothermal conditions involves three-dimensional spherulite growth initiated by athermal nucleation, while under non-isothermal conditions, the mechanism of primary crystallization is more complex. Secondary crystallization displays a lower-dimensional crystal growth, both in the isothermal and non-isothermal processes. The crystallite morphology of nylon 1212, isothermally crystallized at various temperatures, was observed by polarized optical microscopy. The activation energies of crystallization under isothermal and non-isothermal conditions were also calculated based on different approaches.
Resumo:
The results obtained for poly(butylene succinate) (PBS) after Co-60 gamma-ray irradiation, studied by wide-angle X-ray diffraction (WAXD), differential scanning calorimeter (DSC) and polarizing optical microscopy (POM), revealed that the degree of crystallinity, melting temperature and enthalpy decreased with increasing irradiation dose, but that the crystal structure of PBS did not vary when compared to non-irradiated PBS. By using Scherrer equation, small changes occurred in the crystal sizes of L-020, L-110 and L-111. The spherulitic morphology of PBS was strongly dependent on irradiation dose and changed significantly at higher irradiation dosages. The crystallization kinetics of PBS indicated that the Avrami exponent (n) for irradiated PBS was reduced to 2.3, when compared to non-irradiated PBS (3.3).
Resumo:
The crystalline modifications alpha and beta of polypropylene (PP) were studied by using polarized light microscopy (PLM), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). Typically beta crystals surrounded by alpha spherulites were observed at low temperature. With increasing temperature the beta crystals melted and a new crystal appeared. More interestingly, the melting temperature of the new crystal was about 5degrees higher than that of alpha spherulites originally present in the sample formed isothermally. It was assumed that this new crystal was the recrystalline alpha crystal. This assumption was supported by the DSC results. Furthermore, the crystallization kinetics of the PP used was studied on the basis of the traditional Avrami analysis. As a result, the Avrami exponents of crystallization temperature from 120 to 130degreesC ranged between 4.21 and 3.60, indicating that the crystallization mechanism of PP order melt was spherulitic growth and random nucleation.
Resumo:
采用Nd(P507)3 LiBu AlEt3和AlEt3 VCl3两种催化剂体系分别合成了两种分子量与反式1,4单元结构含量不同的反式1,4 聚丁二烯样品(TPBD)。用DSC方法不仅研究了两样品六方相晶体的非等温结晶过程,同时还对单斜相结晶的非等温动力学过程进行了研究。Avrami方程分析显示,在低结晶度下TPBD六方相和单斜相的结晶生长过程呈现热成核的三维球晶生长。研究表明:虽然Ozawa方程在较低温度下能描述TPBD的六方相结构的实验数据,但不能完全描述在较高温度下六方相及单斜相非等温结晶过程,而用莫志深等建议的方程则能很好地描述TPBD六方相和单斜相非等温结晶过程。由Kissinger方程得到TPBD六方相和单斜相结晶的平均结晶活化能分别为-165.8kJ/mol和-220.5kJ/mol。
Resumo:
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L-lactide)poly(ethylene glycol) (PLLA-PEG) diblock copolymers were investigated with wideangle X-ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L-lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000-PEG5000 at a larger degree of supercooling was different from that of PLLA2500-PEG5000, PLLA5000-PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively.
Resumo:
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three-dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen-Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant K, than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, sigma(e) = 101.7-58.0 x 10(-3) J/m(2), and work of chain folding, q = 5.79-3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory-Huggins interaction parameters were obtained.
Resumo:
Isothermal crystallization kinetics and morphology of the poly(L-lactide) block in poly(L-lactide)poly(ethylene glycol) diblock copolymers were studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), respectively. The results were compared with that of the PLLA homopolymer. The introduction of the PEG block accelerated the crystallization rate of the PLLA block and promoted to form ring-banded spherulites. The analysis of isothermal crystallization kinetics has shown that the PLLA homopolymer accorded with the Avrami equation. But the PLLA block of the diblock copolymers deviated from the Avrami equation, which resulted from increasing of the crystallization rate and occurring of the second crystallization process. The equilibrium melting temperature (T,,) of the PLLA block fell with its molecular weight decreasing. The conditions to obtain more regular ring-banded spherulites were below: the sample was the PLLA block of LA(5) EG(5); the crystallization temperature was about from 95 degrees C to 100 degrees C, which almost corresponded to regime II.
Resumo:
The effects of the glass-bead content and size on the nonisothermal crystallization behavior of polypropylene (PP)/glass-bead blends were studied with differential scanning calorimetry. The degree of crystallinity decreased with the addition of glass bead, and the crystallization temperature of the blends was marginally higher than that of pure PP at various cooling rates. Furthermore, the half-time for crystallization decreased with an increase in the glass-bead content or particle size, implying the nucleating role of the glass beads. The nonisothermal crystallization data were analyzed with the methods of Avrami, Ozawa, and Mo. The validity of various kinetic models for the nonisothermal crystallization process of PP/glass-bead blends was examined. The approach developed by Mo successfully described the nonisothermal crystallization behavior of PP and PP/glass-bead blends. Finally, the activation energy for the nonisothermal crystallization of pure PP and PP/glass-bead blends based on the Kissinger method was evaluated.
Resumo:
The nanocomposites of polyamide1010 (PA1010) filled with carbon nanotubes (CNTs) were prepared by melt mixing techniques. The isothermal melt-crystallization kinetics and nonisothermal crystallization behavior of CNTs/PA1010 nanocomposites were investigated by differential scanning calorimetry. The peak temperature, melting point, half-time of crystallization, enthalpy of crystallization, etc. were measured. Two stages of crystallization are observed, including primary crystallization and secondary crystallization. The isothermal crystallization was also described according to Avrami's approach. It has been shown that the addition of CNTs causes a remarkable increase in the overall crystallization rate of PA1010 and affects the mechanism of nucleation and growth of PA1010 crystals. The analysis of kinetic data according to nucleation theories shows that the increment in crystallization rate of CNTs/PA1010 composites results from the decrease in lateral surface free energy.
Resumo:
The crystallization kinetics and the development of lamellar structure during the isothermal crystallization of poly (epsilon-caprolactone) (PCL) were investigated by means of differential scanning calorimetry (DSC) and real-time synchrotron small angle X-ray scattering (SR-SAXS) techniques, respectively. The Avrami analysis was performed to obtain the kinetics parameters. The value of Avrami index, n, is about 3, demonstrating a three-dimensional spherulitic growth on heterogeneous nuclei in the process of isothermal crystallization. The activation energy and the surface free energy of chain folding for isothermal crystallization were determined according to the Arrhenius equation and Hoffman-Lauritzen theory, respectively. In the process of nonisothermal crystallization of PCL, the value of Avrami index, n, is about 4, which demonstrates a three-dimensional spherulitic growth on homogeneous nuclei. In addition, lamellar parameters were obtained from the analysis of SR-SAXS data.
Resumo:
Macrokinetic models, namly the modified Avrami, Ozawa and Zibicki models, were applied to study the non-isothermal melt crystallization process of PET/PEN/DBS blends by DSC measurement. The modified Avrami model was found to describe the experimental data fairly well. With the cooling rates in the range from 5 to 20 K/min, Ozawa model could be well used to describe the early stages of crystallization. However, Ozawa model did not fit the polymer blends during the late stages of crystallization, because it ignored the influence of secondary crystallization. The crystallization ability of the blends decreases with increasing the DBS content from analysis by using Ziabicki kinetic model, which is similar to the results based on calculation of the effective energy barrier of the blends.
Resumo:
研究了自晶种成核对聚对苯二甲酸1,3-丙二酯(PTT)结晶行为的影响.示差扫描量热结果表明,经过自晶种成核处理后,PTT的结晶温度明显增加.应用Avrami方程分析了PTT等温结晶动力学,Avrami指数n的平均值为3.34,表明初级结晶为三维球晶生长.自晶种成核导致结晶活化能和链折叠功减小,促进PTT的结晶.
Resumo:
Isothermal crystallization, subsequent melting behavior and non-isothermal crystallization of nylon 1212 samples have been investigated in the temperature range of 160-171 degreesC using a differential scanning calorimeter (DSC). Subsequent DSC scans of isothermally crystallized samples exhibited three melting endotherms. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallizations of nylon 1212. The Avrami exponent n was evaluated, and was found to be in the range of 1.56-2.03 for isothermal crystallization, and of 2.38-3.05 for non-isothermal crystallization. The activation energies (DeltaE) were determined to be 284.5 KJ/mol and 102.63 KJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius' and the Kissinger's methods.
Resumo:
回顾了描述高聚物结晶后期动力学过程的各种模型、方程以及数据处理方法 ,并就影响高聚物结晶后期动力学过程的某些因素进行了讨论
Resumo:
Isothermal crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was investigated by means of differential scanning calorimetry and polarized optical microscopy (POM). The Avrami analysis can be used successfully to describe the isothermal crystallization kinetics of PHBV, which indicates that the Avrami exponent n = 3 is good for all the temperatures investigated. The spherulitic growth rate, G, was determined by POM. The result shows that the G has a maximum value at about 353 K. Using the equilibrium melting temperature (448 K) determined by the Flory equation for melting point depression together with U-* = 1500 cal mol(-1), T-infinity = 30 K and T-g = 278 K, the nucleation parameter K-g was determined, which was found to be 3.14+/-0.07 x 10(5) (K-2), lower than that for pure PHB. The surface-free energy sigma = 2.55 x 10(-2) J m(-2) and sigma(e) = 2.70+/-0.06 x 10-2 J m(-2) were estimated and the work of chain-folding (q = 12.5+/-0.2 kJ mol(-1)) was derived from sigma(e), and found to be lower than that for PHB. This implies that the chains of PHBV are more flexible than that of PHB.