748 resultados para Explosion
Resumo:
This work was focused on the steam explosion pretreatment reproduction and alkaline delignification reactions on a pilot scale for the ethanol production, through different varieties of natural sugarcane bagasse, pretreated bagasse and delignified pretreated bagasse (cellulosic pulp). The possible chemical composition differences of the various types of bagasse, as well as the chemical composition variations of the materials in the 20 processes of pretreatment and delignification on the pilot scale were verified. The analytical results of the 20 samples of most diverse varieties and origins of natural sugarcane bagasse considering planting soils, planting periods and weather; show no significant chemical differences. It is evident that only with the chemical composition it is not possible to verify the differences between the varieties of sugarcane bagasses. The research results may offer some evidences of these varieties, but it is not a reliable parameter. The pilot process of steam explosion pretreatment and the alkaline delignification process of pretreated material showed through analytical results a good capacity of reproduction, as the standard differences were below 2.7. The average allowed in the pretreatment and alkaline delignification processes were 66.1 +/- 0.8 and 51.5 +/- 2.6 respectively, ensuring an excellent reproduction capacity of the processes obtained through chemical characterizations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Five pilot-scale steam explosion pretreatments of sugarcane bagasse followed by alkaline delignification were explored. The solubilised lignin was precipitated with 98% sulphuric acid. Most of the pentosan (82.6%), and the acetyl group fractions were solubilised during pretreatment, while 90.2% of cellulose and 87.0% lignin were recovered in the solid fraction. Approximately 91% of the lignin and 72.5% of the pentosans contained in the steam-exploded solids were solubilised by delignification, resulting in a pulp with almost 90% of cellulose. The acidification of the black liquors allowed recovery of 48.3% of the lignin contained in the raw material. Around 14% of lignin, 22% of cellulose and 26% of pentosans were lost during the process. In order to increase material recovery, major changes, such as introduction of efficient condensers and the reduction in the number of washing steps, should be done in the process setup. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Strontium-90 activity concentrations in surface soils and areal deposition densities have been studied at a site contaminated by an accidental release to atmosphere from the underground nuclear explosion 'Kraton-3' conducted near the Polar Circle (65.9°N, 112.3°E) within the territory of the former USSR in 1978. In 2001-2002, the ground surface contamination at 14 plots studied ranged from 20 to 15000 kBq/m**2, which significantly exceeds the value of 0.44 kBq/m**2 deduced for three background plots. The zone with substantial radiostrontium contamination extends, at least, 2.5 km in a north-easterly direction from the borehole. The average 137Cs/90Sr ratio in the ground contamination originated from the 'Kraton-3' fallout was estimated to be 0.55, which is significantly different from the ratio of 2.05 evaluated for background plots contaminated mostly from global fallout. Although vertical migration of 90Sr in all undisturbed soil profiles studied is more rapid than that for 137Cs, the depth of percolation of both radionuclides into the ground is mostly limited to the top 10-20 cm, which may be explained, primarily, by permafrost conditions. The horizontal migration rate of radiostrontium in the aqueous phase exceeds the radiocaesium migration rate by many times. This phenomenon seems to be a reason for the significant enrichment of the soil surface layers by radiostrontium at some sites, with variations occurring in accordance with small-scale irregularities of landscape.
Resumo:
Underground coal mines explosions generally arise from the inflammation of a methane/air mixture. This explosion can also generate a subsequent coal dust explosion. Traditionally such explosions have being fought eliminating one or several of the factors needed by the explosion to take place. Although several preventive measures are taken to prevent explosions, other measures should be considered to reduce the effects or even to extinguish the flame front. Unlike other protection methods that remove one or two of the explosion triangle elements, namely; the ignition source, the oxidizing agent and the fuel, explosion barriers removes all of them: reduces the quantity of coal in suspension, cools the flame front and the steam generated by vaporization removes the oxygen present in the flame. Passive water barriers are autonomous protection systems against explosions that reduce to a satisfactory safety level the effects of methane and/or flammable dust explosions. The barriers are activated by the pressure wave provoked in the explosion destroying the barrier troughs and producing a uniform dispersion of the extinguishing agent throughout the gallery section in quantity enough to extinguish the explosion flame. Full scale tests have been carried out in Polish Barbara experimental mine at GIG Central Mining Institute in order to determine the requirements and the optimal installation conditions of these devices for small sections galleries which are very frequent in the Spanish coal mines. Full scale tests results have been analyzed to understand the explosion timing and development, in order to assess on the use of water barriers in the typical small crosssection Spanish galleries. Several arrangements of water barriers have been designed and tested to verify the effectiveness of the explosion suppression in each case. The results obtained demonstrate the efficiency of the water barriers in stopping the flame front even with smaller amounts of water than those established by the European standard. According to the tests realized, water barriers activation times are between 0.52 s and 0.78 s and the flame propagation speed are between 75 m/s and 80 m/s. The maximum pressures (Pmax) obtained in the full scale tests have varied between 0.2 bar and 1.8 bar. Passive barriers protect effectively against the spread of the flame but cannot be used as a safeguard of the gallery between the ignition source and the first row of water troughs or bags, or even after them, as the pressure could remain high after them even if the flame front has been extinguished.
Resumo:
The self-ignition of all kind of powdery substances is a topic studied over the years, especially if the dusty substance is coal or substances related with coal because it may be a cause of energetic materials and human losses. But it is important to note that this is not the only risk in industrial plants that generate or store solid substances. Every combustible powders are potentially explosive and they may cause serious consequences if all the necessary factors are developed. Due to this potentially risk, it is essential a good characterization and knowledge of all the parameters involved in those processes.
A chemical monitoring program of the explosion products in underwater explosion tests / Ming G. Lai.
Resumo:
Molecular studies have the potential to shed light on the origin of the animal phyla by providing independent estimates of the divergence times, but have been criticized for failing to account adequately for variation in rate of evolution. A method of dating divergence times from molecular data addresses the criticisms of earlier studies and provides more realistic, but wider, confidence intervals. The data are not compatible with the Cambrian explosion hypothesis as an explanation for the origin of metazoan phyla, and provide additional support for an extended period of Precambrian metazoan diversification.
Resumo:
The classical problem of thermal explosion is modified so that the chemically active gas is not at rest but is flowing in a long cylindrical pipe. Up to a certain section the heat-conducting walls of the pipe are held at low temperature so that the reaction rate is small and there is no heat release; at that section the ambient temperature is increased and an exothermic reaction begins. The question is whether a slow reaction regime will be established or a thermal explosion will occur. The mathematical formulation of the problem is presented. It is shown that when the pipe radius is larger than a critical value, the solution of the new problem exists only up to a certain distance along the axis. The critical radius is determined by conditions in a problem with a uniform axial temperature. The loss of existence is interpreted as a thermal explosion; the critical distance is the safe reactor’s length. Both laminar and developed turbulent flow regimes are considered. In a computational experiment the loss of the existence appears as a divergence of a numerical procedure; numerical calculations reveal asymptotic scaling laws with simple powers for the critical distance.
Resumo:
The classical problem of the thermal explosion in a long cylindrical vessel is modified so that only a fraction α of its wall is ideally thermally conducting while the remaining fraction 1−α is thermally isolated. Partial isolation of the wall naturally reduces the critical radius of the vessel. Most interesting is the case when the structure of the boundary is a periodic one, so that the alternating conductive α and isolated 1−α parts of the boundary occupy together the segments 2π/N (N is the number of segments) of the boundary. A numerical investigation is performed. It is shown that at small α and large N, the critical radius obeys a scaling law with the coefficients depending on N. For large N, the result is obtained that in the central core of the vessel the temperature distribution is axisymmetric. In the boundary layer near the wall having the thickness ≈2πr0/N (r0 is the radius of the vessel), the temperature distribution varies sharply in the peripheral direction. The temperature distribution in the axisymmetric core at the critical value of the vessel radius is subcritical.
Resumo:
Clearly, the fossil record from the Cambrian period is an invaluable tool for deciphering animal evolution. Less clear, however, is how to integrate the paleontological information with molecular phylogeny and developmental biology data. Equally challenging is answering why the Cambrian period provided such a rich interval for the redeployment of genes that led to more complex bodyplans.
Resumo:
IMB (Irvine, Michigan, Brookline), a collaboration between the University of Michigan, the University of California at Irvine, and the U.S. Department of Energy, was an experiment designed to determine the ultimate stability of matter. The blue giant star Sanduleak in the large magellenic cloud exploded 170,000 years ago giving off a pulse of neutrinos that arrived at earth on 23 February 1987. For a few weeks it was as bright as 100 million suns.
Resumo:
AEC Report No. TID-3578.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Cover title.