990 resultados para Exercise for youth.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. - The present study evaluated the effects of BCAA supplementation on exercise performance of pregnant rats. Methods. - In order to assess these effects, Wistar rats were divided into four groups: sedentary not-supplemented (SNS, n = 8); sedentary supplemented (SS, n = 8); trained not-supplemented (TNS, n = 8) and trained supplemented (TS, n = 8). All groups were submitted to the endurance test until exhaustion (ET) and post-effort lactate (PEL) determination before pregnancy (ET-B and PEL-B) and at the 19th day of pregnancy (ET-19 and PEL-19). Results. - The endurance training significantly increased the ET time to exhaustion (p<0.05). Regardless of BCAA supplementation, both endurance trained groups (TS and TNS) showed a longer time to exhaustion, assessed by ET, compared with the sedentary groups (SS and SNS) (p < 0.05). In the TNS, ET-19 time to exhaustion decreased when compared with the period before pregnancy. On the other hand, ET-19 time to exhaustion was not affected in the TS at the end of the pregnancy period. In addition, TS showed a marked PEL-19 reduction when compared with PEL-B. The data presented herein suggest that BCAA supplementation plays an ergogenic role in the maintenance of exercise performance during pregnancy in rats. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared four different intensities of a bench press exercise for muscle soreness, creatine kinase activity, interleukin (IL)-1, IL-6, tumor necrosis factor- (TNF-), and prostaglandin E2 (PGE2) concentrations in the blood. Thirty-five male Brazilian Army soldiers were randomly assigned to one of five groups: 50% one-repetition maximum (1-RM), 75% 1-RM, 90% 1-RM, 110% 1-RM, and a control group that did not perform the exercise. The total volume (setsrepetitionsload) of the exercise was matched among the exercise groups. Muscle soreness and plasma creatine kinase activity increased markedly (P0.05) after exercise, with no significant differences among the groups. Serum PGE2 concentration also increased markedly (P0.05) after exercise, with a significantly (P0.05) greater increase in the 110% 1-RM group compared with the other groups. A weak but significant (P0.05) correlation was found between peak muscle soreness and peak PGE2 concentration, but no significant correlation was evident between peak muscle soreness and peak creatine kinase activity, or peak creatine kinase activity and peak PGE2 concentration. All groups showed no changes in IL-1, IL-6 or TNF-. Our results suggest that the intensity of bench press exercise does not affect the magnitude of muscle soreness and blood markers of muscle damage and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacurau, RFP, Monteiro, GA, Ugrinowitsch C, Tricoli, V, Cabral, LF, Aoki, MS. Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. J Strength Cond Res 23(1): 304-308, 2009-Different stretching techniques have been used during warm-up routines. However, these routines may decrease force production. The purpose of this study was to compare the acute effect of a ballistic and a static stretching protocol on lower-limb maximal strength. Fourteen physically active women (169.3 +/- 8.2 cm; 64.9 +/- 5.9 kg; 23.1 +/- 3.6 years) performed three experimental sessions: a control session (estimation of 45 degrees leg press one-repetition maximum [1RM]), a ballistic session (20 minutes of ballistic stretch and 45 degrees leg press 1RM), and a static session (20 minutes of static stretch and 45 degrees leg press 1RM). Maximal strength decreased after static stretching (213.2 +/- 36.1 to 184.6 +/- 28.9 kg), but it was unaffected by ballistic stretching (208.4 +/- 34.8 kg). In addition, static stretching exercises produce a greater acute improvement in flexibility compared with ballistic stretching exercises. Consequently, static stretching may not be recommended before athletic events or physical activities that require high levels of force. On the other hand, ballistic stretching could be more appropriate because it seems less likely to decrease maximal strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20 degrees.s(-1); ES) or fast EE (210 degrees.s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims To test the effects of early exercise training (ET) on left ventricular (LV) and autonomic functions, haemodynamics, tissues blood flows (BFs), maximal oxygen consumption (VO(2) max), and mortality after myocardial infarction (MI) in rats. Methods and results Male Wistar rats were divided into: control (C), sedentary-infarcted (SI), and trained-infarcted (TI). One week after MI, TI group underwent an ET protocol (90 days, 50-70% VO2 max). Left ventricular function was evaluated noninvasively and invasively. Baroreflex sensitivity, heart rate variability, and pulse interval were measured. Cardiac output (CO) and regional BFs were determined using coloured microspheres. Infarcted area was reduced in TI (19 +/- 6%) compared with SI (34 +/- 5%) after ET. Exercise training improved the LV and autonomic functions, the CO and regional BF changes induced by MI, as well as increased SERCA2 expression and mRNA vascular endothelial growth factor levels. These changes brought about by ET resulted in mortality rate reduction in the TI (13%) group compared with the SI (54%) group. Conclusion Early aerobic ET reduced cardiac and peripheral dysfunctions and preserved cardiovascular autonomic control after MI in trained rats. Consequently, these ET-induced changes resulted in improved functional capacity and survival after MI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise intensity is a key parameter for exercise prescription but the optimal range for individuals with high cardiorespiratory fitness is unknown. The aims of this study were (1) to determine optimal heart rate ranges for men with high cardiorespiratory fitness based on percentages of maximal oxygen consumption (%VO(2max)) and reserve oxygen consumption (%VO(2reserve)) corresponding to the ventilatory threshold and respiratory compensation point, and ( 2) to verify the effect of advancing age on the exercise intensities. Maximal cardiorespiratory testing was performed on 210 trained men. Linear regression equations were calculated using paired data points between percentage of maximal heart rate (%HR(max)) and %VO(2max) and between percentage of heart rate reserve (%HRR) and %VO(2reserve) attained at each minute during the test. Values of %VO(2max) and %VO(2reserve) at the ventilatory threshold and respiratory compensation point were used to calculate the corresponding values of %HRmax and %HRR, respectively. The ranges of exercise intensity in relation to the ventilatory threshold and respiratory compensation point were achieved at 78-93% of HR(max) and 70-93% of HRR, respectively. Although absolute heart rate decreased with advancing age, there were no age-related differences in %HR(max) and %HRR at the ventilatory thresholds. Thus, in men with high cardiorespiratory fitness, the ranges of exercise intensity based on %HR(max) and %HRR regarding ventilatory threshold were 78-93% and 70-93% respectively, and were not influenced by advancing age.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Few studies have prospectively addressed the effects of exercise in the inflammatory activity of patients with coronary artery disease (CAD). We sought to evaluate the consequences of an acute bout of exercise on inflammatory markers and BNP in untrained CAD patients before and after randomization to a training program. 34 CAD patients underwent a 50-min acute exercise session on a cycle-ergometer at 65% peak oxygen uptake before and after blood sampling. They were then randomized to a 4-month chronic exercise program (15 patients) or general lifestyle recommendations (19 patients), undergoing a new acute session of exercise after that. In the overall population, acute exercise caused a significant increase in C-reactive protein [CRP; 1.79 (4.49) vs. 1.94 (4.89) mg/L, P < 0.001], monokine induced by interferon-gamma [Mig; 351 (324) vs. 373 (330) pg/mL, P = 0.027] and vascular adhesion molecule-1 [VCAM-1; 226 (82) vs. 252 (110) pg/mL, P = 0.02]. After 4-months, in exercise-trained patients, there was a significant decrease in the inflammatory response provoked by the acute exercise compared to patients in the control group reflected by a significant decrease in the differences between rest and post-exercise levels of CRP [-0.29 (0.84) mg/L vs. -0.11 (0.21) mg/L, P = 0.05]. Resting BNP was also significantly lower in exercise-trained patients when compared to untrained controls [15.6 (16.2) vs. 9.7 (11.4) pg/mL, P = 0.04 and 19.2 (27.8) vs. 23.2 (27.5) pg/mL, P = 0.76; respectively]. Chronic exercise training might partially reverse the inflammatory response caused by acute exercise in CAD patients. These results suggest that regular exercise is an important nonpharmacological strategy to the improvement in inflammation in CAD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to test the hypotheses that in obese children: 1) hypocaloric diet (D) improves both heart rate recovery at 1 min (Delta HRR1) cfter an exercise test, and cardiac autonomic nervous system activity (CANSA) in obese children; 2) Diet and exercise training (DET) combined leads to greater improvement in both Delta HRR1 after an exercise test and in CANSA, than D alone. Moreover, we examined the relationships among Delta HRR1, CANSA, cardiorespiratory fitness and anthropometric variables (AV) in obese children submitted to D and to DET. 33 obese children (10 +/- 0.2 years; body mass index (BMI) >95(th) percentile) were divided into 2 groups: D (n = 15; BMI = 31 +/- 1 kg/m(2)) and DET (n = 18; 29 +/- 1 kg/m(2)). All children performed a maximal cardiopulmonary exercise test on a treadmill. The Delta HRR1 was defined as the difference between heart rate at peak and at 1-min post-exercise. CANSA was assessed using power spectral analysis of heart rate variability at rest. The sympathovagal balance (low frequency and high frequency ratio, LF/HF) was measured. After interventions, all obese children showed reduced body weight (P < 0.05). The D group did not improve in terms of peak VO(2), Delta HRR1 or LF/HF ratio (P > 0.05). In contrast, the DET group showed increased peak VO(2) (P = 0.01) and improved Delta HRR1 (Delta HRR1 = 37.3 +/- 2.6; P = 0.01) and LF/HF ratio (P = 0.001). The DET group demonstrated significant relationships among Delta HRR1, peak VO(2) and CANSA (P < 0.05). In conclusion, DET, in contrast to D, promoted improved Delta HRR1 and CANSA in obese children, suggesting a positive influence of increased levels of cardiorespiratory fitness by exercise training on cardiac autonomic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 +/- 0.7 years; 80.5 +/- 2.0 kg; 180 +/- 2 cm, mean +/- SE) exercised for 60 min in a hot, dry environment (40 +/- 0A degrees C and 45 A +/- 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1A degrees C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 A +/- 0.07, POST: 1.48 A +/- 0.10, 1 h POST: 1.22 A +/- 0.11 ng mL(-1); p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 A +/- 0.08, POST: 1.20 A +/- 0.15, 1 h POST: 1.17 A +/- 0.16 ng mL(-1); p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 A +/- 0.02 and HST2: 4.2 A +/- 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 A +/- 0.02 vs. POST, 2.9 A +/- 0.9 density units, mean +/- SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 +/- 1.2 vs. POST, 4.4 +/- 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = -0.85, p < 0.05). In conclusion, HA increased resting leukocyte Hsp72 levels and inhibited exercise-induced expression. This intracellular adaptation probably induces thermotolerance. In addition, the non-increase in plasma Hsp72 after HA may be related to lower stress at the cellular level in the acclimated individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood pressure (BP) assessment during resistance exercise can be useful to avoid high BP, reducing cardiovascular risk, especially in hypertensive individuals. However, non-invasive accurate technique for this purpose is not available. The aim of this study was to compare finger photoplethysmographic (FPP) and intra-arterial BP values and responses during resistance exercise. Eight non-medicated hypertensive subjects (5 males, 30-60 years) were evaluated during pre-exercise resting period and during three sets of the knee extension exercise performed at 80% of 1RM until fatigue. BP was measured simultaneously by FPP and intra-arterial methods. Data are mean +/- SD. Systolic BP was significantly higher with FPP than with intra-arterial: at pre-exercise (157 +/- 13 vs. 152 +/- 10 mmHg; p < 0.01) and the mean (202 +/- 29 vs. 198 +/- 26 mmHg; p < 0.01), and the maximal (240 +/- 26 vs. 234 +/- 16 mmHg; p < 0.05) values achieved during exercise. The increase in systolic BP during resistance exercise was similar between FPP and intra-arterial (+ 73 +/- 29 vs. + 71 +/- 18 mmHg; p = 0.59). Diastolic BP values and increases were lower with FPP. In conclusion, FPP provides similar values of BP increment during resistance exercise than intra-arterial method. However, it overestimates by 2.6 +/- 6.1% the maximal systolic BP achieved during this mode of exercise and underestimates by 8.8 +/- 5.8% the maximal diastolic BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of beta-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162-1173, 2010. In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids L-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or (V) over dotO(2max), some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.