972 resultados para Evolutionary multiobjective optimization


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distribution networks paradigm is changing currently requiring improved methodologies and tools for network analysis and planning. A relevant issue is analyzing the impact of the Distributed Generation penetration in passive networks considering different operation scenarios. Studying DG optimal siting and sizing the planner can identify the network behavior in presence of DG. Many approaches for the optimal DG allocation problem successfully used multi-objective optimization techniques. So this paper contributes to the fundamental stage of multi-objective optimization of finding the Pareto optimal solutions set. It is proposed the application of a Multi-objective Tabu Search and it was verified a better performance comparing to the NSGA-II method. © 2009 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is the application of the Interior Point and Branch and Bound methods in multiobjective optimization models related to sugarcane harvest residual biomass. These methods showed their viability to help on choosing the sugarcane planting varieties, searching to optimize cost and energy balance of harvest residual biomass, which have conflitant objectives. These methods provide satisfactory results, with fair computing performance and reliable and consistent solutions to the analyzed models. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Problems as voltage increase at the end of a feeder, demand supply unbalance in a fault condition, power quality decline, increase of power losses, and reduction of reliability levels may occur if Distributed Generators (DGs) are not properly allocated. For this reason, researchers have been employed several solution techniques to solve the problem of optimal allocation of DGs. This work is focused on the ancillary service of reactive power support provided by DGs. The main objective is to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). The LOC will be determined for different allocation alternatives of DGs as a result of a multi-objective optimization process, aiming the minimization of losses in the lines of the system and costs of active power generation from DGs, and the maximization of the static voltage stability margin of the system. The effectiveness of the proposed methodology in improving the goals outlined was demonstrated using the IEEE 34 bus distribution test feeder with two DGs cosidered to be allocated. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditionally, ancillary services are supplied by large conventional generators. However, with the huge penetration of distributed generators (DGs) as a result of the growing interest in satisfying energy requirements, and considering the benefits that they can bring along to the electrical system and to the environment, it appears reasonable to assume that ancillary services could also be provided by DGs in an economical and efficient way. In this paper, a settlement procedure for a reactive power market for DGs in distribution systems is proposed. Attention is directed to wind turbines connected to the network through synchronous generators with permanent magnets and doubly-fed induction generators. The generation uncertainty of this kind of DG is reduced by running a multi-objective optimization algorithm in multiple probabilistic scenarios through the Monte Carlo method and by representing the active power generated by the DGs through Markov models. The objectives to be minimized are the payments of the distribution system operator to the DGs for reactive power, the curtailment of transactions committed in an active power market previously settled, the losses in the lines of the network, and a voltage profile index. The proposed methodology was tested using a modified IEEE 37-bus distribution test system. © 1969-2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The urbanization of modern societies has imposed to the planners and decision-makers a more precise attention to facts not considered before. Several aspects, such as the energy availability and the deleterious effect of pollution on the populations, must be considered in the policy decisions of cities urbanization. The current paradigm presents centralized power stations supplying a city, and a combination of technologies may compose the energy mix of a country, such as thermal power plants, hydroelectric plants, wind systems and solar-based systems, with their corresponding emission pattern. A goal programming multi-objective optimization model is presented for the electric expansion analysis of a tropical city, and also a case study for the city of Guaratinguetá, Brazil, considering a particular wind and solar radiation patterns established according to actual data and modeled via the time series analysis method. Scenarios are proposed and the results of single environmental objective, single economic objective and goal programming multi-objective modeling are discussed. The consequences of each dispatch decision, which considers pollutant emission exportation to the neighborhood or the need of supplementing electricity by purchasing it from the public electric power grid, are discussed. The results revealed energetic dispatch for the alternatives studied and the optimum environmental and economic solution was obtained. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. © 2013 Springer-Verlag.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A localização de bancos de capacitores nas redes de distribuição de energia elétrica, corretamente dimensionados, busca compensar eventuais excessos de circulação de potência reativa pelas linhas, o que implica a redução de custos operacionais pela redução das perdas de energia e um aumento da capacidade de transmissão de potência ativa assegurando os níveis estabelecidos de tensão e fator de potência simultaneamente. A proliferação das cargas não lineares provocou uma mudança nos cenários de estudo dos sistemas elétricos de potência devido aos efeitos nocivos que os harmônicos gerados por elas ocasionam sobre a qualidade da energia elétrica. Considerando este novo cenário, esta tese tem como objetivo geral desenvolver uma ferramenta computacional utilizando técnicas de inteligência computacional apoiada em algoritmos genéticos (AG), para a otimização multiobjetivo da compensação da potência reativa em redes elétricas de distribuição capaz de localizar e dimensionar de forma ótima as unidades de compensação necessárias para obter os melhores benefícios econômicos e a manutenção dos índices de qualidade da energia estabelecidos pelas normas brasileiras. Como Inovação Tecnológica do trabalho a ferramenta computacional desenvolvida permite otimizar a compensação da potência reativa para melhorar do fator de potência em redes de distribuição contaminadas com harmônicos que, diferentemente de métodos anteriores, não só emprega bancos de capacitores, mas também filtros de harmônicos com esse objetivo. Utiliza-se o algoritmo NSGA-II, que determina as soluções ótimas de Pareto para o problema e permite ao especialista determinar as soluções mais efetivas. A proposta para a solução do problema apresenta várias inovações podendo-se destacar que a solução obtida permite determinar a compensação de potência reativa com capacitores em sistemas com certa penetração harmônica, atendendo a normas de qualidade de energia pertinentes, com relação aos níveis de distorção harmônica tolerados.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we deal with the one-dimensional integer cutting stock problem, which consists of cutting a set of available objects in stock in order to produce ordered smaller items in such a way as to optimize a given objective function, which in this paper is composed of three different objectives: minimization of the number of objects to be cut (raw material), minimization of the number of different cutting patterns (setup time), minimization of the number of saw cycles (optimization of the saw productivity). For solving this complex problem we adopt a multiobjective approach in which we adapt, for the problem studied, a symbiotic genetic algorithm proposed in the literature. Some theoretical and computational results are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El objetivo de esta tesis es la caracterización de la generación térmica representativa de la existente en la realidad, para posteriormente proceder a su modelización y simulación integrándolas en una red eléctrica tipo y llevar a cabo estudios de optimización multiobjetivo económico medioambiental. Para ello, en primera instancia se analiza el contexto energético y eléctrico actual, y más concretamente el peninsular, en el que habiendo desaparecido las centrales de fuelóleo, sólo quedan ciclos combinados y centrales de carbón de distinto rango. Seguidamente se lleva a cabo un análisis de los principales impactos medioambientales de las centrales eléctricas basadas en combustión, representados sobre todo por sus emisiones de CO2, SO2 y NOx, de las medidas de control y mitigación de las mismas y de la normativa que les aplica. A continuación, a partir de las características de los combustibles y de la información de los consumos específicos, se caracterizan los grupos térmicos frente a las funciones relevantes que definen su comportamiento energético, económico y medioambiental, en términos de funciones de salida horarias dependiendo de la carga. Se tiene en cuenta la posibilidad de desnitrificación y desulfuración. Dado que las funciones objetivo son múltiples, y que están en conflicto unas con otras, se ha optado por usar métodos multiobjetivo que son capaces de identificar el contorno de puntos óptimos o frente de Pareto, en los que tomando una solución no existe otra que lo mejore en alguna de las funciones objetivo sin empeorarlo en otra. Se analizaron varios métodos de optimización multiobjetivo y se seleccionó el de las ε constraint, capaz de encontrar frentes no convexos y cuya optimalidad estricta se puede comprobar. Se integró una representación equilibrada de centrales de antracita, hulla nacional e importada, lignito y ciclos combinados en la red tipo IEEE-57, en la que se puede trabajar con siete centrales sin distorsionar demasiado las potencias nominales reales de los grupos, y se programó en Matlab la resolución de flujos óptimos de carga en alterna con el método multiobjetivo integrado. Se identifican los frentes de Pareto de las combinaciones de coste y cada uno de los tres tipos de emisión, y también el de los cuatro objetivos juntos, obteniendo los resultados de costes óptimos del sistema para todo el rango de emisiones. Se valora cuánto le cuesta al sistema reducir una tonelada adicional de cualquier tipo de emisión a base de desplazarse a combinaciones de generación más limpias. Los puntos encontrados aseguran que bajo unas determinadas emisiones no pueden ser mejorados económicamente, o que atendiendo a ese coste no se puede reducir más allá el sistema en lo relativo a emisiones. También se indica cómo usar los frentes de Pareto para trazar estrategias óptimas de producción ante cambios horarios de carga. ABSTRACT The aim of this thesis is the characterization of electrical generation based on combustion processes representative of the actual power plants, for the latter modelling and simulation of an electrical grid and the development of economic- environmental multiobjective optimization studies. In this line, the first step taken is the analysis of the current energetic and electrical framework, focused on the peninsular one, where the fuel power plants have been shut down, and the only ones remaining are coal units of different types and combined cycle. Then it is carried out an analysis of the main environmental impacts of the thermal power plants, represented basically by the emissions of CO2, SO2 y NOx, their control and reduction measures and the applicable regulations. Next, based on the combustibles properties and the information about the units heat rates, the different power plants are characterized in relation to the outstanding functions that define their energy, economic and environmental behaviour, in terms of hourly output functions depending on their load. Optional denitrification and desulfurization is considered. Given that there are multiple objectives, and that they go in conflictive directions, it has been decided the use of multiobjective techniques, that have the ability of identifying the optimal points set, which is called the Pareto front, where taken a solution there will be no other point that can beat the former in an objective without worsening it in another objective. Several multiobjective optimization methods were analysed and pondered, selecting the ε constraint technique, which is able to find no convex fronts and it is opened to be tested to prove the strict Pareto optimality of the obtained solutions. A balanced representation of the thermal power plants, formed by anthracite, lignite, bituminous national and imported coals and combined cycle, was integrated in the IEEE-57 network case. This system was selected because it deals with a total power that will admit seven units without distorting significantly the actual size of the power plants. Next, an AC optimal power flow with the multiobjective method implemented in the routines was programmed. The Pareto fronts of the combination of operative costs with each of the three emissions functions were found, and also the front of all of them together. The optimal production costs of the system for all the emissions range were obtained. It is also evaluated the cost of reducing an additional emission ton of any of the emissions when the optimal production mix is displaced towards cleaner points. The obtained solutions assure that under a determined level of emissions they cannot be improved economically or, in the other way, at a determined cost it cannot be found points of lesser emissions. The Pareto fronts are also applied for the search of optimal strategic paths to follow the hourly load changes.