969 resultados para Evoked Potentials, Visual
Resumo:
Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.
Resumo:
Current models of brain organization include multisensory interactions at early processing stages and within low-level, including primary, cortices. Embracing this model with regard to auditory-visual (AV) interactions in humans remains problematic. Controversy surrounds the application of an additive model to the analysis of event-related potentials (ERPs), and conventional ERP analysis methods have yielded discordant latencies of effects and permitted limited neurophysiologic interpretability. While hemodynamic imaging and transcranial magnetic stimulation studies provide general support for the above model, the precise timing, superadditive/subadditive directionality, topographic stability, and sources remain unresolved. We recorded ERPs in humans to attended, but task-irrelevant stimuli that did not require an overt motor response, thereby circumventing paradigmatic caveats. We applied novel ERP signal analysis methods to provide details concerning the likely bases of AV interactions. First, nonlinear interactions occur at 60-95 ms after stimulus and are the consequence of topographic, rather than pure strength, modulations in the ERP. AV stimuli engage distinct configurations of intracranial generators, rather than simply modulating the amplitude of unisensory responses. Second, source estimations (and statistical analyses thereof) identified primary visual, primary auditory, and posterior superior temporal regions as mediating these effects. Finally, scalar values of current densities in all of these regions exhibited functionally coupled, subadditive nonlinear effects, a pattern increasingly consistent with the mounting evidence in nonhuman primates. In these ways, we demonstrate how neurophysiologic bases of multisensory interactions can be noninvasively identified in humans, allowing for a synthesis across imaging methods on the one hand and species on the other.
Resumo:
In this thesis, three main questions were addressed using event-related potentials (ERPs): (1) the timing of lexical semantic access, (2) the influence of "top-down" processes on visual word processing, and (3) the influence of "bottom-up" factors on visual word processing. The timing of lexical semantic access was investigated in two studies using different designs. In Study 1,14 participants completed two tasks: a standard lexical decision (LD) task which required a word/nonword decision to each target stimulus, and a semantically primed version (LS) of it using the same category of words (e.g., animal) within each block following which participants made a category judgment. In Study 2, another 12 participants performed a standard semantic priming task, where target stimulus words (e.g., nurse) could be either semantically related or unrelated to their primes (e.g., doctor, tree) but the order of presentation was randomized. We found evidence in both ERP studies that lexical semantic access might occur early within the first 200 ms (at about 170 ms for Study 1 and at about 160 ms for Study 2). Our results were consistent with more recent ERP and eye-tracking studies and are in contrast with the traditional research focus on the N400 component. "Top-down" processes, such as a person's expectation and strategic decisions, were possible in Study 1 because of the blocked design, but they were not for Study 2 with a randomized design. Comparing results from two studies, we found that visual word processing could be affected by a person's expectation and the effect occurred early at a sensory/perceptual stage: a semantic task effect in the PI component at about 100 ms in the ERP was found in Study 1 , but not in Study 2. Furthermore, we found that such "top-down" influence on visual word processing might be mediated through separate mechanisms depending on whether the stimulus was a word or a nonword. "Bottom-up" factors involve inherent characteristics of particular words, such as bigram frequency (the total frequency of two-letter combinations of a word), word frequency (the frequency of the written form of a word), and neighborhood density (the number of words that can be generated by changing one letter of an original word or nonword). A bigram frequency effect was found when comparing the results from Studies 1 and 2, but it was examined more closely in Study 3. Fourteen participants performed a similar standard lexical decision task but the words and nonwords were selected systematically to provide a greater range in the aforementioned factors. As a result, a total of 18 word conditions were created with 18 nonword conditions matched on neighborhood density and neighborhood frequency. Using multiple regression analyses, we foimd that the PI amplitude was significantly related to bigram frequency for both words and nonwords, consistent with results from Studies 1 and 2. In addition, word frequency and neighborhood frequency were also able to influence the PI amplitude separately for words and for nonwords and there appeared to be a spatial dissociation between the two effects: for words, the word frequency effect in PI was found at the left electrode site; for nonwords, the neighborhood frequency effect in PI was fovind at the right elecfrode site. The implications of otir findings are discussed.
Resumo:
Les cortices sensoriels sont des régions cérébrales essentielles pour la perception. En particulier, le cortex visuel traite l’information visuelle en provenance de la rétine qui transite par le thalamus. Les neurones sont les unités fonctionnelles qui transforment l'information sensorielle en signaux électriques, la transfèrent vers le cortex et l'intègrent. Les neurones du cortex visuel sont spécialisés et analysent différents aspects des stimuli visuels. La force des connections entre les neurones peut être modulée par la persistance de l'activité pré-synaptique et induit une augmentation ou une diminution du signal post-synaptique à long terme. Ces modifications de la connectivité synaptique peuvent induire la réorganisation de la carte corticale, c’est à dire la représentation de ce stimulus et la puissance de son traitement cortical. Cette réorganisation est connue sous le nom de plasticité corticale. Elle est particulièrement active durant la période de développement, mais elle s’observe aussi chez l’adulte, par exemple durant l’apprentissage. Le neurotransmetteur acétylcholine (ACh) est impliqué dans de nombreuses fonctions cognitives telles que l’apprentissage ou l’attention et il est important pour la plasticité corticale. En particulier, les récepteurs nicotiniques et muscariniques du sous-type M1 et M2 sont les récepteurs cholinergiques impliqués dans l’induction de la plasticité corticale. L’objectif principal de la présente thèse est de déterminer les mécanismes de plasticité corticale induits par la stimulation du système cholinergique au niveau du télencéphale basal et de définir les effets sur l’amélioration de la perception sensorielle. Afin d’induire la plasticité corticale, j’ai jumelé des stimulations visuelles à des injections intracorticales d’agoniste cholinergique (carbachol) ou à une stimulation du télencéphale basal (neurones cholinergiques qui innervent le cortex visuel primaire). J'ai analysé les potentiels évoqués visuels (PEVs) dans le cortex visuel primaire des rats pendant 4 à 8 heures après le couplage. Afin de préciser l’action de l’ACh sur l’activité des PEVs dans V1, j’ai injecté individuellement l’antagoniste des récepteurs muscariniques, nicotiniques, α7 ou NMDA avant l’infusion de carbachol. La stimulation du système cholinergique jumelée avec une stimulation visuelle augmente l’amplitude des PEVs durant plus de 8h. Le blocage des récepteurs muscarinique, nicotinique et NMDA abolit complètement cette amélioration, tandis que l’inhibition des récepteurs α7 a induit une augmentation instantanée des PEVs. Ces résultats suggèrent que l'ACh facilite à long terme la réponse aux stimuli visuels et que cette facilitation implique les récepteurs nicotiniques, muscariniques et une interaction avec les récepteur NMDA dans le cortex visuel. Ces mécanismes sont semblables à la potentiation à long-terme, évènement physiologique lié à l’apprentissage. L’étape suivante était d’évaluer si l’effet de l’amplification cholinergique de l’entrée de l’information visuelle résultait non seulement en une modification de l’activité corticale mais aussi de la perception visuelle. J’ai donc mesuré l’amélioration de l’acuité visuelle de rats adultes éveillés exposés durant 10 minutes par jour pendant deux semaines à un stimulus visuel de type «réseau sinusoïdal» couplé à une stimulation électrique du télencéphale basal. L’acuité visuelle a été mesurée avant et après le couplage des stimulations visuelle et cholinergique à l’aide d’une tâche de discrimination visuelle. L’acuité visuelle du rat pour le stimulus d’entrainement a été augmentée après la période d’entrainement. L’augmentation de l’acuité visuelle n’a pas été observée lorsque la stimulation visuelle seule ou celle du télencéphale basal seul, ni lorsque les fibres cholinergiques ont été lésées avant la stimulation visuelle. Une augmentation à long terme de la réactivité corticale du cortex visuel primaire des neurones pyramidaux et des interneurones GABAergiques a été montrée par l’immunoréactivité au c-Fos. Ainsi, lorsque couplé à un entrainement visuel, le système cholinergique améliore les performances visuelles pour l’orientation et ce probablement par l’optimisation du processus d’attention et de plasticité corticale dans l’aire V1. Afin d’étudier les mécanismes pharmacologiques impliqués dans l’amélioration de la perception visuelle, j’ai comparé les PEVs avant et après le couplage de la stimulation visuelle/cholinergique en présence d’agonistes/antagonistes sélectifs. Les injections intracorticales des différents agents pharmacologiques pendant le couplage ont montré que les récepteurs nicotiniques et M1 muscariniques amplifient la réponse corticale tandis que les récepteurs M2 muscariniques inhibent les neurones GABAergiques induisant un effet excitateur. L’infusion d’antagoniste du GABA corrobore l’hypothèse que le système inhibiteur est essentiel pour induire la plasticité corticale. Ces résultats démontrent que l’entrainement visuel jumelé avec la stimulation cholinergique améliore la plasticité corticale et qu’elle est contrôlée par les récepteurs nicotinique et muscariniques M1 et M2. Mes résultats suggèrent que le système cholinergique est un système neuromodulateur qui peut améliorer la perception sensorielle lors d’un apprentissage perceptuel. Les mécanismes d’amélioration perceptuelle induits par l’acétylcholine sont liés aux processus d’attention, de potentialisation à long-terme et de modulation de la balance d’influx excitateur/inhibiteur. En particulier, le couplage de l’activité cholinergique avec une stimulation visuelle augmente le ratio de signal / bruit et ainsi la détection de cibles. L’augmentation de la concentration cholinergique corticale potentialise l’afférence thalamocorticale, ce qui facilite le traitement d’un nouveau stimulus et diminue la signalisation cortico-corticale minimisant ainsi la modulation latérale. Ceci est contrôlé par différents sous-types de récepteurs cholinergiques situés sur les neurones GABAergiques ou glutamatergiques des différentes couches corticales. La présente thèse montre qu’une stimulation électrique dans le télencéphale basal a un effet similaire à l’infusion d’agoniste cholinergique et qu’un couplage de stimulations visuelle et cholinergique induit la plasticité corticale. Ce jumelage répété de stimulations visuelle/cholinergique augmente la capacité de discrimination visuelle et améliore la perception. Cette amélioration est corrélée à une amplification de l’activité neuronale démontrée par immunocytochimie du c-Fos. L’immunocytochimie montre aussi une différence entre l’activité des neurones glutamatergiques et GABAergiques dans les différentes couches corticales. L’injection pharmacologique pendant la stimulation visuelle/cholinergique suggère que les récepteurs nicotiniques, muscariniques M1 peuvent amplifier la réponse excitatrice tandis que les récepteurs M2 contrôlent l’activation GABAergique. Ainsi, le système cholinergique activé au cours du processus visuel induit des mécanismes de plasticité corticale et peut ainsi améliorer la capacité perceptive. De meilleures connaissances sur ces actions ouvrent la possibilité d’accélérer la restauration des fonctions visuelles lors d’un déficit ou d’amplifier la fonction cognitive.
Resumo:
Defensive behaviors, such as withdrawing your hand to avoid potentially harmful approaching objects, rely on rapid sensorimotor transformations between visual and motor coordinates. We examined the reference frame for coding visual information about objects approaching the hand during motor preparation. Subjects performed a simple visuomanual task while a task-irrelevant distractor ball rapidly approached a location either near to or far from their hand. After the distractor ball appearance, single pulses of transcranial magnetic stimulation were delivered over the subject's primary motor cortex, eliciting motor evoked potentials (MEPs) in their responding hand. MEP amplitude was reduced when the ball approached near the responding hand, both when the hand was on the left and the right of the midline. Strikingly, this suppression occurred very early, at 70-80ms after ball appearance, and was not modified by visual fixation location. Furthermore, it was selective for approaching balls, since static visual distractors did not modulate MEP amplitude. Together with additional behavioral measurements, we provide converging evidence for automatic hand-centered coding of visual space in the human brain.
Resumo:
Spontaneous activity of the brain at rest frequently has been considered a mere backdrop to the salient activity evoked by external stimuli or tasks. However, the resting state of the brain consumes most of its energy budget, which suggests a far more important role. An intriguing hint comes from experimental observations of spontaneous activity patterns, which closely resemble those evoked by visual stimulation with oriented gratings, except that cortex appeared to cycle between different orientation maps. Moreover, patterns similar to those evoked by the behaviorally most relevant horizontal and vertical orientations occurred more often than those corresponding to oblique angles. We hypothesize that this kind of spontaneous activity develops at least to some degree autonomously, providing a dynamical reservoir of cortical states, which are then associated with visual stimuli through learning. To test this hypothesis, we use a biologically inspired neural mass model to simulate a patch of cat visual cortex. Spontaneous transitions between orientation states were induced by modest modifications of the neural connectivity, establishing a stable heteroclinic channel. Significantly, the experimentally observed greater frequency of states representing the behaviorally important horizontal and vertical orientations emerged spontaneously from these simulations. We then applied bar-shaped inputs to the model cortex and used Hebbian learning rules to modify the corresponding synaptic strengths. After unsupervised learning, different bar inputs reliably and exclusively evoked their associated orientation state; whereas in the absence of input, the model cortex resumed its spontaneous cycling. We conclude that the experimentally observed similarities between spontaneous and evoked activity in visual cortex can be explained as the outcome of a learning process that associates external stimuli with a preexisting reservoir of autonomous neural activity states. Our findings hence demonstrate how cortical connectivity can link the maintenance of spontaneous activity in the brain mechanistically to its core cognitive functions.
Resumo:
During the past decade, brain–computer interfaces (BCIs) have rapidly developed, both in technological and application domains. However, most of these interfaces rely on the visual modality. Only some research groups have been studying non-visual BCIs, primarily based on auditory and, sometimes, on somatosensory signals. These non-visual BCI approaches are especially useful for severely disabled patients with poor vision. From a broader perspective, multisensory BCIs may offer more versatile and user-friendly paradigms for control and feedback. This chapter describes current systems that are used within auditory and somatosensory BCI research. Four categories of noninvasive BCI paradigms are employed: (1) P300 evoked potentials, (2) steady-state evoked potentials, (3) slow cortical potentials, and (4) mental tasks. Comparing visual and non-visual BCIs, we propose and discuss different possible multisensory combinations, as well as their pros and cons. We conclude by discussing potential future research directions of multisensory BCIs and related research questions
Resumo:
Parkinson's disease (PD) is a common disorder of middle-aged and elderly people, in which there is degeneration of the extra-pyramidal motor system. In some patients, the disease is associated with a range of visual signs and symptoms, including defects in visual acuity, colour vision, the blink reflex, pupil reactivity, saccadic and smooth pursuit movements and visual evoked potentials. In addition, there may be psychophysical changes, disturbances of complex visual functions such as visuospatial orientation and facial recognition, and chronic visual hallucinations. Some of the treatments associated with PD may have adverse ocular reactions. If visual problems are present, they can have an important effect on overall motor function, and quality of life of patients can be improved by accurate diagnosis and correction of such defects. Moreover, visual testing is useful in separating PD from other movement disorders with visual symptoms, such as dementia with Lewy bodies (DLB), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Although not central to PD, visual signs and symptoms can be an important though obscure aspect of the disease and should not be overlooked.
Resumo:
Subjects with Alzheimer's disease (AD) exhibit normal visually evoked potentials (VEP) to pattern reversal stimuli but a delayed P2 flash response. The pattern response may originate in the primary visual cortex via the geniculo-calcarine pathway while the flash P2 may originate in the association areas via the cholinergic-tectal pathway. We now show: a) that the pathology of AD is more prominent in the visual association areas B18/19 than in B17 and b) that the magnetic signal to flash and pattern may originate from B18/19 and B17 respectively.
Resumo:
The practicality or recording normative data for two components of the visually evoked magnetic response (VEMR) (P100M and P2M) using a single channel dc-SQUID second order gradiometer in an unshielded environment was investigated. Latency norms of the P100M and P2M were more variable than the corresponding electrical P100 and P2 visual evoked potentials. Methods of improving the normative data for clinical use were discussed.
Resumo:
This thesis is an exploration of the organisation and functioning of the human visual system using the non-invasive functional imaging modality magnetoencephalography (MEG). Chapters one and two provide an introduction to the ‘human visual system and magnetoencephalographic methodologies. These chapters subsequently describe the methods by which MEG can be used to measure neuronal activity from the visual cortex. Chapter three describes the development and implementation of novel analytical tools; including beamforming based analyses, spectrographic movies and an optimisation of group imaging methods. Chapter four focuses on the use of established and contemporary analytical tools in the investigation of visual function. This is initiated with an investigation of visually evoked and induced responses; covering visual evoked potentials (VEPs) and event related synchronisation/desynchronisation (ERS/ERD). Chapter five describes the employment of novel methods in the investigation of cortical contrast response and demonstrates distinct contrast response functions in striate and extra-striate regions of visual cortex. Chapter six use synthetic aperture magnetometry (SAM) to investigate the phenomena of visual cortical gamma oscillations in response to various visual stimuli; concluding that pattern is central to its generation and that it increases in amplitude linearly as a function of stimulus contrast, consistent with results from invasive electrode studies in the macaque monkey. Chapter seven describes the use of driven visual stimuli and tuned SAM methods in a pilot study of retinotopic mapping using MEG; finding that activity in the primary visual cortex can be distinguished in four quadrants and two eccentricities of the visual field. Chapter eight is a novel implementation of the SAM beamforming method in the investigation of a subject with migraine visual aura; the method reveals desynchronisation of the alpha and gamma frequency bands in occipital and temporal regions contralateral to observed visual abnormalities. The final chapter is a summary of main conclusions and suggested further work.
Resumo:
It is known that parallel pathways exist within the visual system. These have been described as magnocellular and parvocellular as a result of the layered organisation of the lateral geniculate nucleus and extend from the retina to the cortex. Dopamine (DA) and acetylcholine (ACH) are neurotransmitters that are present in the visual pathway. DA is present in the retina and is associated with the interplexiform cells and horizontal cells. ACH is also present in the retina and is associated with displaced amacrine cells; it is also present in the superior colliculus. DA is found to be significantly depleted in the brain of Parkinson's disease (PD) patients and ACH in Alzheimer's disease (AD) patients. For this reason these diseases were used to assess the function of DA and ACH in the electrophysiology of the visual pathway. Experiments were conducted on young normals to design stimuli that would preferentially activate the magnocellular or parvocellular pathway. These stimuli were then used to evoke visual evoked potentials (VEP) in patients with PD and AD, in order to assess the function of DA and ACH in the visual pathway. Electroretinograms (ERGs) were also measured in PD patients to assess the role of DA in the retina. In addition, peripheral ACH function was assessed by measuring VEPs, ERGs and contrast sensitivity (CS) in young normals following the topical instillation of hyoscine hydrobromide (an anticholinergic drug). The results indicate that the magnocellular pathway can be divided into two: a cholinergic tectal-association area pathway carrying luminance information, and a non-cholinergic geniculo-cortical pathway carrying spatial information. It was also found that depletion of DA had very little effect on the VEPs or ERGs, confirming a general regulatory function for this neurotransmitter.
Resumo:
Distortion or deprivation of vision during an early `critical' period of visual development can result in permanent visual impairment which indicates the need to identify and treat visually at-risk individuals early. A significant difficulty in this respect is that conventional, subjective methods of visual acuity determination are ineffective before approximately three years of age. In laboratory studies, infant visual function has been quantified precisely, using objective methods based on visual evoked potentials (VEP), preferential looking (PL) and optokinetic nystagmus (OKN) but clinical assessment of infant vision has presented a particular difficulty. An initial aim of this study was to evaluate the relative clinical merits of the three techniques. Clinical derivatives were devised, the OKN method proved unsuitable but the PL and VEP methods were evaluated in a pilot study. Most infants participating in the study had known ocular and/or neurological abnormalities but a few normals were included for comparison. The study suggested that the PL method was more clinically appropriate for the objective assessment of infant acuity. A study of normal visual development from birth to one year was subsequently conducted. Observations included cycloplegic refraction, ophthalmoscopy and preferential looking visual acuity assessment using horizontally and vertically oriented square wave gratings. The aims of the work were to investigate the efficiency and sensitivity of the technique and to study possible correlates of visual development. The success rate of the PL method varied with age; 87% of newborns and 98% of infants attending follow-up successfully completed at least one acuity test. Below two months monocular acuities were difficult to secure; infants were most testable around six months. The results produced were similar to published data using the acuity card procedure and slightly lower than, but comparable with acuity data derived using extended PL methods. Acuity development was not impaired in infants found to have retinal haemorrhages as newborns. A significant relationship was found between newborn binocular acuity and anisometropia but not with other refractive findings. No strong or consistent correlations between grating acuity and refraction were found for three, six or twelve months olds. Improvements in acuity and decreases in levels of hyperopia over the first week of life were suggestive of recovery from minor birth trauma. The refractive data was analysed separately to investigate the natural history of refraction in normal infants. Most newborns (80%) were hyperopic, significant astigmatism was found in 86% and significant anisometropia in 22%. No significant alteration in spherical equivalent refraction was noted between birth and three months, a significant reduction in hyperopia was evident by six months and this trend continued until one year. Observations on the astigmatic component of the refractive error revealed a rather erratic series of changes which would be worthy of further investigation since a repeat refraction study suggested difficulties in obtaining stable measurements in newborns. Astigmatism tended to decrease between birth and three months, increased significantly from three to six months and decreased significantly from six to twelve months. A constant decrease in the degree of anisometropia was evident throughout the first year. These findings have implications for the correction of infantile refractive error.
Resumo:
Alzheimer’s disease (AD) is an important neurodegenerative disorder causing visual problems in the elderly population. The pathology of AD includes the deposition in the brain of abnormal aggregates of ?-amyloid (A?) in the form of senile plaques (SP) and abnormally phosphorylated tau in the form of neurofibrillary tangles (NFT). A variety of visual problems have been reported in patients with AD including loss of visual acuity (VA), colour vision and visual fields; changes in pupillary responses to mydriatics, defects in fixation and in smooth and saccadic eye movements; changes in contrast sensitivity and in visual evoked potentials (VEP); and disturbances in complex visual tasks such as reading, visuospatial function, and in the naming and identification of objects. In addition, pathological changes have been observed to affect the eye, visual pathway, and visual cortex in AD. To better understand degeneration of the visual cortex in AD, the laminar distribution of the SP and NFT was studied in visual areas V1 and V2 in 18 cases of AD which varied in disease onset and duration. In area V1, the mean density of SP and NFT reached a maximum in lamina III and in laminae II and III respectively. In V2, mean SP density was maximal in laminae III and IV and NFT density in laminae II and III. The densities of SP in laminae I of V1 and NFT in lamina IV of V2 were negatively correlated with patient age. No significant correlations were observed in any cortical lamina between the density of NFT and disease onset or duration. However, in area V2, the densities of SP in lamina II and lamina V were negatively correlated with disease duration and disease onset respectively. In addition, there were several positive correlations between the densities of SP and NFT in V1 with those in area V2. The data suggest: (1) NFT pathology is greater in area V2 than V1, (2) laminae II/III of V1 and V2 are most affected by the pathology, (3) the formation of SP and NFT in V1 and V2 are interconnected, and (4) the pathology may spread between visual areas via the feed-forward short cortico-cortical connections.
Resumo:
Multiple system atrophy (MSA) is a rare movement disorder and a member of the 'parkinsonian syndromes', which also include Parkinson's disease (PD), progressive supranuclear palsy (PSP), dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD). Multiple system atrophy is a complex syndrome, in which patients exhibit a variety of signs and symptoms, including parkinsonism, ataxia and autonomic dysfunction. It can be difficult to separate MSA from the other parkinsonian syndromes but if ocular signs and symptoms are present, they may aid differential diagnosis. Typical ocular features of MSA include blepharospasm, excessive square-wave jerks, mild to moderate hypometria of saccades, impaired vestibular-ocular reflex (VOR), nystagmus and impaired event-related evoked potentials. Less typical features include slowing of saccadic eye movements, the presence of vertical gaze palsy, visual hallucinations and an impaired electroretinogram (ERG). Aspects of primary vision such as visual acuity, colour vision or visual fields are usually unaffected. Management of the disease to deal with problems of walking, movement, daily tasks and speech problems is important in MSA. Optometrists can work in collaboration with the patient and health-care providers to identify and manage the patient's visual deficits. A more specific role for the optometrist is to correct vision to prevent falls and to monitor the anterior eye to prevent dry eye and control blepharospasm.