725 resultados para Euler-Bernoulli
Resumo:
Carbon Fibre Reinforced Carbon (CFRC) Composites are increasing their applications due to their high strength and Youngs Modulus at high temperatures in inert atmosphere. Although much work has been done on processing and structure and properties relationship, few studies have addressed the modelling of mechanical properties. This work is divided in two parts. In the first part, a modelling of mechanical properties was carried out for two bi-directional composites using a model based on the Bernoulli-Euler theory for symmetric laminated beams. In the second part, acoustic emission (AE) was used as an auxiliary technique for monitoring the failure process of the composites. Differences in fracture behaviour are reflected in patterns of AE.
Resumo:
The main topic of the thesis is optimal stopping. This is treated in two research articles. In the first article we introduce a new approach to optimal stopping of general strong Markov processes. The approach is based on the representation of excessive functions as expected suprema. We present a variety of examples, in particular, the Novikov-Shiryaev problem for Lévy processes. In the second article on optimal stopping we focus on differentiability of excessive functions of diffusions and apply these results to study the validity of the principle of smooth fit. As an example we discuss optimal stopping of sticky Brownian motion. The third research article offers a survey like discussion on Appell polynomials. The crucial role of Appell polynomials in optimal stopping of Lévy processes was noticed by Novikov and Shiryaev. They described the optimal rule in a large class of problems via these polynomials. We exploit the probabilistic approach to Appell polynomials and show that many classical results are obtained with ease in this framework. In the fourth article we derive a new relationship between the generalized Bernoulli polynomials and the generalized Euler polynomials.
Resumo:
Aproximación a la figura de Jacob Bernoulli, matemático muy relacionado con esta disciplina. Se hace énfasis en la resolución de Bernoulli de un problema relacionado con la determinación de las curvas. También se hace referencia a las espirales, por las que Bernoulli sentía gran atracción. Finalmente, antes de morir Bernoulli estuvo trabajando en las probabilidades introduciendo la distribución binomial.
Resumo:
Recorrido por la biografía del matemático suizo Leonhard Euler. El artículo se estructura en base a los diferentes periodos de la vida del científico y sus aportaciones en el mundo de las matemáticas, sobretodo en el campo del álgebra.
Resumo:
Se muestran algunas de las teorías del matemático Leonhard Euler..
Resumo:
A partir de un caso práctico se explica el número matemático e. Leonhard Euler fue el matemático que hizo más descubrimientos relativos a este número, aunque el primero en estudiar el límite fue Jacob Bernoulli. Este número debería figurar en los libros de texto de Matemáticas por su interés didáctico. Leonhard Euler calculó el número e con mucha exactitud, para lo que desarrolló las herramientas adecuadas y supo ver su utilidad. Una ventaja de la nueva expresión para el número e es la rapidez en el cálculo. Por otro lado, se puede utilizar para dar una demostración asequible de la irracionalidad del número. Por último, se da una bibliografía donde encontrar ideas interesantes para ilustrar cuestiones relativas al número e..
Resumo:
Se estudia la teoría de grafos en relación con el teorema de Euler. La teoría de grafos se refiere a la teoría de conjuntos relativa a las relaciones binarias de un conjunto numerable consigo mismo. Esta teoría posee un vasto campo de aplicaciones en Física, Economía, Teoría de la Información, Programación Lineal, Transportas, Psicología, e incluso en ciertos dominios del arte. Se pretende realizar un trabajo que sirva como seminario optativo para los alumnos de COU, que presente a los alumnos un teorema clásico de geometría mediante la teoría de grafos, un aspecto bastante olvidado en los programas. Se utilizan los métodos y el lenguaje de la teoría de grafos para demostrar el teorema de Euler, que liga caras, vértices y aristas de un poliedro regular. Para todo ello en primer lugar se sistematizan una serie de conceptos previos, se analizan las propiedades de distintos tipos de grafos, y por último, se realizan demostraciones.
Resumo:
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.
Resumo:
Numerical results are presented and compared for three conservative upwind difference schemes for the Euler equations when applied to two standard test problems. This includes consideration of the effect of treating part of the flux balance as a source, and a comparison of different averaging of the flow variables. Two of the schemes are also shown to be equivalent in their implementation, while being different in construction and having different approximate Jacobians. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In a recent paper [P. Glaister, Conservative upwind difference schemes for compressible flows in a Duct, Comput. Math. Appl. 56 (2008) 1787–1796] numerical schemes based on a conservative linearisation are presented for the Euler equations governing compressible flows of an ideal gas in a duct of variable cross-section, and in [P. Glaister, Conservative upwind difference schemes for compressible flows of a real gas, Comput. Math. Appl. 48 (2004) 469–480] schemes based on this philosophy are presented for real gas flows with slab symmetry. In this paper we seek to extend these ideas to encompass compressible flows of real gases in a duct. This will incorporate the handling of additional terms arising out of the variable geometry and the non-ideal nature of the gas.