999 resultados para Espaces De Fonctions Cp (x)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charmless charged two-body B decays are sensitive probes of the CKM matrix, that parameterize CP violation in the Standard Model (SM), and have the potential to reveal the presence of New Physics. The framework of CP violation within the SM, the role of the CKM matrix, with its basic formalism, and the current experimental status are presented. The theoretical tools commonly used to deal with hadronic B decays and an overview of the phenomenology of charmless two-body B decays are outlined. LHCb is one of the four main experiments operating at the Large Hadron Collider (LHC), devoted to the measurement of CP violation and rare decays of charm and beauty hadrons. The LHCb detector is described, focusing on the technologies adopted for each sub-detector and summarizing their performances. The status-of-the-art of the LHCb measurements with charmless two-body B decays is then presented. Using the 37/pb of integrated luminosity collected at sqrt(s) = 7 TeV by LHCb during 2010, the direct CP asymmetries ACP(B0 -> Kpi) = −0.074 +/- 0.033 +/- 0.008 and ACP(Bs -> piK) = 0.15 +/- 0.19 +/- 0.02 are measured. Using 320/pb of integrated luminosity collected during 2011 these measurements are updated to ACP(B0 -> Kpi) = −0.088 +/- 0.011 +/- 0.008 and ACP(Bs -> piK) = 0.27 +/- 0.08 +/- 0.02. In addition, the branching ratios BR(B0 -> K+K-) = (0.13+0.06-0.05 +/- 0.07) x 10^-6 and BR(Bs -> pi+pi-) = (0.98+0.23-0.19 +/- 0.11) x 10^-6 are measured. Finally, using a sample of 370/pb of integrated luminosity collected during 2011, the relative branching ratios BR(B0 -> pi+pi-)/BR(B0 -> Kpi) = 0.262 +/- 0.009 +/- 0.017, (fs/fd)BR(Bs -> K+K-)/BR(B0 -> Kpi)=0.316 +/- 0.009 +/- 0.019, (fs/fd)BR(Bs -> piK)/BR(B0 -> Kpi) = 0.074 +/- 0.006 +/- 0.006 and BR(Lambda_b -> ppi)/BR(Lambda_b -> pK)=0.86 +/- 0.08 +/- 0.05 are determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a systematic analysis of the bar B to X_sgamma photon spectrum in the endpoint region is presented. The endpoint region refers to a kinematic configuration of the final state, in which the photon has a large energy m_b-2E_gamma = O(Lambda_QCD), while the jet has a large energy but small invariant mass. Using methods of soft-collinear effective theory and heavy-quark effective theory, it is shown that the spectrum can be factorized into hard, jet, and soft functions, each encoding the dynamics at a certain scale. The relevant scales in the endpoint region are the heavy-quark mass m_b, the hadronic energy scale Lambda_QCD and an intermediate scale sqrt{Lambda_QCD m_b} associated with the invariant mass of the jet. It is found that the factorization formula contains two different types of contributions, distinguishable by the space-time structure of the underlying diagrams. On the one hand, there are the direct photon contributions which correspond to diagrams with the photon emitted directly from the weak vertex. The resolved photon contributions on the other hand arise at O(1/m_b) whenever the photon couples to light partons. In this work, these contributions will be explicitly defined in terms of convolutions of jet functions with subleading shape functions. While the direct photon contributions can be expressed in terms of a local operator product expansion, when the photon spectrum is integrated over a range larger than the endpoint region, the resolved photon contributions always remain non-local. Thus, they are responsible for a non-perturbative uncertainty on the partonic predictions. In this thesis, the effect of these uncertainties is estimated in two different phenomenological contexts. First, the hadronic uncertainties in the bar B to X_sgamma branching fraction, defined with a cut E_gamma > 1.6 GeV are discussed. It is found, that the resolved photon contributions give rise to an irreducible theory uncertainty of approximately 5 %. As a second application of the formalism, the influence of the long-distance effects on the direct CP asymmetry will be considered. It will be shown that these effects are dominant in the Standard Model and that a range of -0.6 < A_CP^SM < 2.8 % is possible for the asymmetry, if resolved photon contributions are taken into account.