948 resultados para Error threshold
Resumo:
It is possible to estimate the depth of focus (DOF) of the eye directly from wavefront measurements using various retinal image quality metrics (IQMs). In such methods, DOF is defined as the range of defocus error that degrades the retinal image quality calculated from IQMs to a certain level of the maximum value. Although different retinal image quality metrics are used, currently there have been two arbitrary threshold levels adopted, 50% and 80%. There has been limited study of the relationship between these threshold levels and the actual measured DOF. We measured the subjective DOF in a group of 17 normal subjects, and used through-focus augmented visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM. For each subject, a VSOTF threshold level was derived that would match the subjectively measured DOF. Significant correlation was found between the subject’s estimated threshold level and the HOA RMS (Pearson’s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual’s DOF from a single measurement of their wavefront aberrations.
Resumo:
As order dependencies between process tasks can get complex, it is easy to make mistakes in process model design, especially behavioral ones such as deadlocks. Notions such as soundness formalize behavioral errors and tools exist that can identify such errors. However these tools do not provide assistance with the correction of the process models. Error correction can be very challenging as the intentions of the process modeler are not known and there may be many ways in which an error can be corrected. We present a novel technique for automatic error correction in process models based on simulated annealing. Via this technique a number of process model alternatives are identified that resolve one or more errors in the original model. The technique is implemented and validated on a sample of industrial process models. The tests show that at least one sound solution can be found for each input model and that the response times are short.
Resumo:
Gay community media functions as a system with three nodes, in which the flows of information and capital theoretically benefit all parties: the gay community gains a sense of cohesion and citizenship through media; the gay media outlets profit from advertisers’ capital; and advertisers recoup their investments in lucrative ‘pink dollar’ revenue. But if a necessary corollary of all communication systems is error or noise, where—and what—are the errors in this system? In this paper we argue that the ‘error’ in the gay media system is Queerness, and that the gay media system ejects (in a process of Kristevan abjection) these Queer identities in order to function successfully. We examine the ways in which Queer identities are excluded from representation in such media through a discourse and content analysis of The Sydney Star Observer (Australia’s largest gay and lesbian paper). First, we analyse the way Queer bodies are excluded from the discourses that construct and reinforce both the ideal gay male body and the notions of homosexual essence required for that body to be meaningful. We then argue that abject Queerness returns in the SSO’s discourses of public health through the conspicuous absence of the AIDS-inflicted body (which we read as the epitome of the abject Queer), since this absence paradoxically conjures up a trace of that which the system tries to expel. We conclude by arguing that because the ‘Queer error’ is integral to the SSO, gay community media should practise a politics of Queer inclusion rather than exclusion.
Resumo:
The depth of focus (DOF) can be defined as the variation in image distance of a lens or an optical system which can be tolerated without incurring an objectionable lack of sharpness of focus. The DOF of the human eye serves a mechanism of blur tolerance. As long as the target image remains within the depth of focus in the image space, the eye will still perceive the image as being clear. A large DOF is especially important for presbyopic patients with partial or complete loss of accommodation (presbyopia), since this helps them to obtain an acceptable retinal image when viewing a target moving through a range of near to intermediate distances. The aim of this research was to investigate the DOF of the human eye and its association with the natural wavefront aberrations, and how higher order aberrations (HOAs) can be used to expand the DOF, in particular by inducing spherical aberrations ( 0 4 Z and 0 6 Z ). The depth of focus of the human eye can be measured using a variety of subjective and objective methods. Subjective measurements based on a Badal optical system have been widely adopted, through which the retinal image size can be kept constant. In such measurements, the subject.s tested eye is normally cyclopleged. Objective methods without the need of cycloplegia are also used, where the eye.s accommodative response is continuously monitored. Generally, the DOF measured by subjective methods are slightly larger than those measured objectively. In recent years, methods have also been developed to estimate DOF from retinal image quality metrics (IQMs) derived from the ocular wavefront aberrations. In such methods, the DOF is defined as the range of defocus error that degrades the retinal image quality calculated from the IQMs to a certain level of the possible maximum value. In this study, the effect of different amounts of HOAs on the DOF was theoretically evaluated by modelling and comparing the DOF of subjects from four different clinical groups, including young emmetropes (20 subjects), young myopes (19 subjects), presbyopes (32 subjects) and keratoconics (35 subjects). A novel IQM-based through-focus algorithm was developed to theoretically predict the DOF of subjects with their natural HOAs. Additional primary spherical aberration ( 0 4 Z ) was also induced in the wavefronts of myopes and presbyopes to simulate the effect of myopic refractive correction (e.g. LASIK) and presbyopic correction (e.g. progressive power IOL) on the subject.s DOF. Larger amounts of HOAs were found to lead to greater values of predicted DOF. The introduction of primary spherical aberration was found to provide moderate increase of DOF while slightly deteriorating the image quality at the same time. The predicted DOF was also affected by the IQMs and the threshold level adopted. We then investigated the influence of the chosen threshold level of the IQMs on the predicted DOF, and how it relates to the subjectively measured DOF. The subjective DOF was measured in a group of 17 normal subjects, and we used through-focus visual Strehl ratio based on optical transfer function (VSOTF) derived from their wavefront aberrations as the IQM to estimate the DOF. The results allowed comparison of the subjective DOF with the estimated DOF and determination of a threshold level for DOF estimation. Significant correlation was found between the subject.s estimated threshold level for the estimated DOF and HOA RMS (Pearson.s r=0.88, p<0.001). The linear correlation can be used to estimate the threshold level for each individual subject, subsequently leading to a method for estimating individual.s DOF from a single measurement of their wavefront aberrations. A subsequent study was conducted to investigate the DOF of keratoconic subjects. Significant increases of the level of HOAs, including spherical aberration, coma and trefoil, can be observed in keratoconic eyes. This population of subjects provides an opportunity to study the influence of these HOAs on DOF. It was also expected that the asymmetric aberrations (coma and trefoil) in the keratoconic eye could interact with defocus to cause regional blur of the target. A dual-Badal-channel optical system with a star-pattern target was used to measure the subjective DOF in 10 keratoconic eyes and compared to those from a group of 10 normal subjects. The DOF measured in keratoconic eyes was significantly larger than that in normal eyes. However there was not a strong correlation between the large amount of HOA RMS and DOF in keratoconic eyes. Among all HOA terms, spherical aberration was found to be the only HOA that helped to significantly increase the DOF in the studied keratoconic subjects. Through the first three studies, a comprehensive understanding of DOF and its association to the HOAs in the human eye had been achieved. An adaptive optics system was then designed and constructed. The system was capable of measuring and altering the wavefront aberrations in the subject.s eye and measuring the resulting DOF under the influence of different combination of HOAs. Using the AO system, we investigated the concept of extending the DOF through optimized combinations of 0 4 Z and 0 6 Z . Systematic introduction of a targeted amount of both 0 4 Z and 0 6 Z was found to significantly improve the DOF of healthy subjects. The use of wavefront combinations of 0 4 Z and 0 6 Z with opposite signs can further expand the DOF, rather than using 0 4 Z or 0 6 Z alone. The optimal wavefront combinations to expand the DOF were estimated using the ratio of increase in DOF and loss of retinal image quality defined by VSOTF. In the experiment, the optimal combinations of 0 4 Z and 0 6 Z were found to provide a better balance of DOF expansion and relatively smaller decreases in VA. Therefore, the optimal combinations of 0 4 Z and 0 6 Z provides a more efficient method to expand the DOF rather than 0 4 Z or 0 6 Z alone. This PhD research has shown that there is a positive correlation between the DOF and the eye.s wavefront aberrations. More aberrated eyes generally have a larger DOF. The association of DOF and the natural HOAs in normal subjects can be quantified, which allows the estimation of DOF directly from the ocular wavefront aberration. Among the Zernike HOA terms, spherical aberrations ( 0 4 Z and 0 6 Z ) were found to improve the DOF. Certain combinations of 0 4 Z and 0 6 Z provide a more effective method to expand DOF than using 0 4 Z or 0 6 Z alone, and this could be useful in the optimal design of presbyopic optical corrections such as multifocal contact lenses, intraocular lenses and laser corneal surgeries.
Resumo:
Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.
Resumo:
We study model selection strategies based on penalized empirical loss minimization. We point out a tight relationship between error estimation and data-based complexity penalization: any good error estimate may be converted into a data-based penalty function and the performance of the estimate is governed by the quality of the error estimate. We consider several penalty functions, involving error estimates on independent test data, empirical VC dimension, empirical VC entropy, and margin-based quantities. We also consider the maximal difference between the error on the first half of the training data and the second half, and the expected maximal discrepancy, a closely related capacity estimate that can be calculated by Monte Carlo integration. Maximal discrepancy penalty functions are appealing for pattern classification problems, since their computation is equivalent to empirical risk minimization over the training data with some labels flipped.
Resumo:
We consider complexity penalization methods for model selection. These methods aim to choose a model to optimally trade off estimation and approximation errors by minimizing the sum of an empirical risk term and a complexity penalty. It is well known that if we use a bound on the maximal deviation between empirical and true risks as a complexity penalty, then the risk of our choice is no more than the approximation error plus twice the complexity penalty. There are many cases, however, where complexity penalties like this give loose upper bounds on the estimation error. In particular, if we choose a function from a suitably simple convex function class with a strictly convex loss function, then the estimation error (the difference between the risk of the empirical risk minimizer and the minimal risk in the class) approaches zero at a faster rate than the maximal deviation between empirical and true risks. In this paper, we address the question of whether it is possible to design a complexity penalized model selection method for these situations. We show that, provided the sequence of models is ordered by inclusion, in these cases we can use tight upper bounds on estimation error as a complexity penalty. Surprisingly, this is the case even in situations when the difference between the empirical risk and true risk (and indeed the error of any estimate of the approximation error) decreases much more slowly than the complexity penalty. We give an oracle inequality showing that the resulting model selection method chooses a function with risk no more than the approximation error plus a constant times the complexity penalty.
Resumo:
We study Krylov subspace methods for approximating the matrix-function vector product φ(tA)b where φ(z) = [exp(z) - 1]/z. This product arises in the numerical integration of large stiff systems of differential equations by the Exponential Euler Method, where A is the Jacobian matrix of the system. Recently, this method has found application in the simulation of transport phenomena in porous media within mathematical models of wood drying and groundwater flow. We develop an a posteriori upper bound on the Krylov subspace approximation error and provide a new interpretation of a previously published error estimate. This leads to an alternative Krylov approximation to φ(tA)b, the so-called Harmonic Ritz approximant, which we find does not exhibit oscillatory behaviour of the residual error.
Resumo:
The measurement error model is a well established statistical method for regression problems in medical sciences, although rarely used in ecological studies. While the situations in which it is appropriate may be less common in ecology, there are instances in which there may be benefits in its use for prediction and estimation of parameters of interest. We have chosen to explore this topic using a conditional independence model in a Bayesian framework using a Gibbs sampler, as this gives a great deal of flexibility, allowing us to analyse a number of different models without losing generality. Using simulations and two examples, we show how the conditional independence model can be used in ecology, and when it is appropriate.
Resumo:
Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15mm while the MRI-based models contained an average error of 0.23mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.