1000 resultados para Er3 ions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the optical properties of erbium-doped and erbium/ytterbium codoped Na(2)O-Al(2)O(3)-TiO(2)-Nb(2)O(5)-P(2)O(5) glass systems and also the characterization of planar waveguides obtained by typical thermally assisted Ag+<-> Na+ ion-exchange process. The glass systems allow the preparation of single mode and multimode planar waveguides presenting a strong and relatively broad emission at 1536 nm. The emission signal in the infrared region is intensified for silver-containing samples when compared with free-silver samples. The emission signal intensification may be attributed to a nonplasmonic energy transfer from silver species to Er3+ ions as no bands related to surface plasmon resonance (SPR) of silver nanoparticles were observed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The local environment of Er3+ ions in microporous titanosilicate ETS-10 and in synthetic narsarsukite and glassy materials obtained by calcination of ETS-10 has been investigated by EXAFS, Raman and photoluminescence spectroscopies. Er L-III-edge EXAFS studies of Er3+-doped ETS-10 support the view that the exchanged Er3+ ions reside close to the (negatively charged) TiO6 octahedra. In ETS-10, Er3+ is partially bonded to framework oxygen atoms and hydration water molecules. The Er...Ti distance (3.3 Angstrom) is similar to the Na...Ti distances (3.15-3.20 Angstrom) reported previously for Na-ETS-10. Although the exact location of the ErO6 units within the host structure of Er3+-doped synthetic narsarsukite is still an open question, it is most likely that Er3+ substitutes Ti4+ rather than Na+ ions. EXAFS spectroscopy indicates that no significant clustering of erbium atoms occurs in the titanosilicate samples studied. Evidence for the insertion of Er3+ ions in the framework of narsarsukite has been obtained by Raman spectroscopy. This is indicated by the increasing full-width at half-maximum (FWHM) of the 775 cm(-1) peak and the increasing intensity of the anatase peaks as the erbium content increases. In addition, as the narsarsukite Er3+ content increases a band at ca. 515 cm(-1) firstly broadens and subsequently a new peak appears at ca. 507 cm(-1).Er3+-doped narsarsukite exhibits a characteristic local vibrational frequency, (h) over bar omega ca. 330 cm(-1), with an electron-phonon coupling, g ca. 0.2, which constitutes additional evidence for framework Er3+ insertion. The number of lines in the infrared emission spectrum of synthetic narsarsukite indicates the presence of two optically-active erbium centres with very similar local environments and an average I-4(13/2) lifetime of 7.8 +/- 0.2 ms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited by CW laser radiation at 1540 nm and under cryogenic temperatures is reported. Intense upconversion emission signals around 530, 550 and 660 nm corresponding to the H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground state were generated and studied as a function of the laser intensity and temperature. The upconversion excitation mechanism of the Er3+ ions emitting energy levels was accomplished via stepwise multiphoton absorption. The green upconversion luminescence exhibited a fivefold intensity enhancement when the temperature of the sample was varied in the range between 5 and 300 K. A maximum green upconversion intensity was attained around 120 K and a steady decreasing behavior for higher temperatures up to 300 K was observed. A model based upon conventional rate equations was used to model the observed temperature evolution of the upconversion luminescence. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silica-based sol-gel waveguides activated by Er3+ ions are attractive materials for integrated optic devices. 70SiO(2)-30HfO(2) planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-get route. The films were deposited on v-SiO2 and silica-on-silicon substrates, using dip-coating technique. The waveguides show a homogeneous surface morphology, high densification degree and uniform refractive index across the thickness. Emission in the C-telecommunication band was observed at room temperature for ill the samples upon excitation at 980 nm. The shape is found to be almost independent on erbium content, with a FWHM between 44 and 48 nm. The I-4(13/2) level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 and 6.7 ms, depending on the erbium concentration. The waveguide deposited on silica-on-silicon substrate supports one single propagation mode at 1.5 mum with a confinement coefficient of 0.85, and a losses of about 0.8 dB/cm at 632.8 nm. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Germanium- and tellurium-based glasses have been largely studied due to their recognized potential for photonics. In this paper, we review our recent studies that include the investigation of the Stokes and anti-Stokes photoluminescence (PL) in different glass systems containing metallic and semiconductor nanoparticles (NPs). In the case of the samples with metallic NPs, the enhanced PL was attributed to the increased local field on the rare-earth ions located in the proximity of the NPs and/or the energy transfer from the metallic NPs to the rare-earth ions. For the glasses containing silicon NPs, the PL enhancement was mainly due to the energy transfer from the NPs to the Er3+ ions. The nonlinear (NL) optical properties of PbO-GeO 2 films containing gold NPs were also investigated. The experiments in the pico- and subpicosecond regimes revealed enhanced values of the NL refractive indices and large NL absorption coefficients in comparison with the films without gold NPs. The reported experiments demonstrate that germanate and tellurite glasses, having appropriate rare-earth ions doping and NPs concentration, are strong candidates for PL-based devices, all-optical switches, and optical limiting. 2013 Cid Bartolomeu de Araujo et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relative to the Er3 +:gold-nanoparticle (Er3 +:Au-NP) axis, the polarization of the gold nanoparticle can be longitudinal (electric dipole parallel to the Er3 +:Au-NP axis) or transverse (electric dipole perpendicular to the Er3 +:Au-NP axis). For longitudinal polarization, the plasmon resonance modes of gold nanoparticles embedded in Er3 +-doped germanium-tellurite glass are activated using laser lines at 808 and 488 nm in resonance with radiative transitions of Er3 + ions. The gold nanoparticles were grown within the host glass by thermal annealing over various lengths of time, achieving diameters lower than 1.6 nm. The resonance wavelengths, determined theoretically and experimentally, are 770 and 800 nm. The absorption wavelength of nanoparticles was determined by using the Frohlich condition. Gold nanoparticles provide tunable emission resulting in a large enhancement for the 2H11/2 4I13/2 (emission at 805 nm) and 4S 3/2 4I13/2 (emission at 840 nm) electronic transitions of Er3 + ions; this is associated with the quantum yield of the energy transfer process. The excitation pathways, up-conversion and luminescence spectra of Er3 + ions are described through simplified energy level diagrams. We observed that up-conversion is favored by the excited-state absorption due to the presence of the gold nanoparticles coupled with the Er3 + ions within the glass matrix. 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SnO2:2 at. %Er xerogel samples were obtained by sol-gel technique from colloidal suspensions with distinct pHs. The evaluation of critical regions inside the nanocrystallite is fundamental for the interpretation of the influence of pH on the emission data. In this way, the nanocrystal depletion layer thickness was obtained with the help of photoluminescence, Raman, X-ray diffraction, and field-emission gun scanning electron microscopy measurements. It was observed that acid suspensions (pH < 7) lead to high surface disorder in which a larger number of cross-linked bonds Sn-O-Sn among nanoparticles are present. For these samples, the nanoparticle depletion layer is larger as compared to samples obtained from other pH. Photoluminescence measurement in the near infrared region indicates that the emission intensity of the transition 4I13/2 4I15/2 is also influenced by the pH of the starting colloidal suspension, generating peaks more or less broadened, depending on location of Er3+ ions in the SnO2 lattice (high or low symmetry sites). 2013 AIP Publishing LLC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For the first time. effect of halide ions (F-, Cl-, Br-, and I-) introduction on structure, thermal stability, and upconversion fluorescence in Er3+/Yb3+-codoped oxide-halide germanium-bismuth glasses has been systematically investigated. The results show that halide ions modified germanium-bismuth glasses have lower maximum phonon energy and phonon density, worse thermal stability. longer measured lifetimes of I-4(l1/2) level, and stronger upconversion emission than germanium-bismuth glass. All these results indicate that halide ions play an important role in the formation of glass network, and have an important influence on the upconversion luminescence. The possible upconversion mechanisms of Er3+ ion are also evaluated. &COPY; 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Effect of fluoride ions introduction on structural, OH- content and up-conversion luminescence properties in Er3+-doped heavy metal oxide glasses have been investigated. Structure was investigated, indicating that fluoride has an important influence on the phonon density, maximum phonon energy of host glasses. With increasing fluoride content, the up-conversion luminescence intensity and quantum efficiencies increase notably, which could not be explained only by the maximum phonon energy change of host glasses. Our results show that, with the introduction of PbF2, the decrease of phonon density and OH- content contributes more to the enhanced up-conversion emissions than that of maximum phonon energy. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Er3+/Yb3+-codoped novel oxyfluoride bismuth-germanium glass was prepared and its up-conversion fluorescence property under 975 nm excitation has been studied. Intense green and weak red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H(11/2) -> I-4(15/2), S-4(3/2) -> I-4(15/2), and F-4(9/2) -> I-4(15/2), respectively, were observed at room temperature. The possible up-conversion mechanism was also evaluated. The optimal Yb3+-Er3+ concentration ratio is found based on the direct lifetime measurements of excited levels for Er3+ ion. The structure of this novel oxyfluoride bismuth-germanium glass has been investigated by peak-deconvolution of FT-Raman spectrum, and the structural information was obtained from the peak wavenumbers. This novel oxyfluoride bismuth-germanium glass with relatively lower maximum phonon energy (similar to 731 cm(-1)) can be used as potential host material for up-conversion lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Cientfico e Tecnolgico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydrothermal reaction of the acetate salts of the rare-earths, 5-aminoisophthalic acid (H(2)AIP), and NaOH at 150 degrees C for 3 days gave rise to a new family of three-dimensional rare-earth aminoisophthalates, M(mu(2)-OH)(C8H5NO4)] M = Y3+ (I), La3+ (II), Pr3+ (III), Nd3+ (IV), Sm3+ (V), Eu3+ (VI), Gd3+ (VII), Dy3+ (VIII), and Er3+ (IX)]. The structures contain M-O(H)-M chains connected by AIP anions. The AIP ions are connected to five metal centers and each metal center is connected with five AIP anions giving rise to a unique (5,5) net. To the best of our knowledge, this is the first observation of a (5,5) net in metal-organic frameworks that involve rare-earth elements. The doping of Eu3+/(3+) ions in place of Y3+/ La3+ in the parent structures gave rise to characteristic metal-centered emission (red = Eu3+, green = Tb3+). Life-time studies indicated that the excited emission states in the case of Eu3+ (4 mol-% doped) are in the range 0.287-0.490 ms and for Tb3+ (4 mol-% doped) are in the range of 1.265-1.702 ms. The Nd3+-containing compound exhibits up-conversion behavior based on two-photon absorption when excited using lambda = 580 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ce3+ ions were introduced into the Er3+/Yb3+ -codoped TeO2-WO3-ZnO glasses, and the effect of Ce3+ on the emission properties at 1.5 mu m band and the upconversion luminescence of Er3+ in the glasses was investigated. With the increasing of Ce3+ concentration, the emission intensity of Er3+ at 1.5 mu m band increases firstly, and then decreases. The optimal doping concentration of Ce3+ is about 2.07 x 10(20)/cm(3). As for the Er3+ emission at 1.5-mu m band, the fluorescence lifetime decreases a little from 3.4ms to 3.0ms, while the full width at half maximum (FWHM) hardly changes with the increase of Cc 3+ concentration. Due to the effective cross relaxation between Ce3+ and Er3+ : Er3+ (I-4(11/2)) + Ce3+ (F-2(5/2)) -> Er3+ (I-4(13/2)) + Ce3+ (F-2(7/2)), the upconversion emission intensity of Er3+ is reduced greatly. But when Ce3+ -doping concentration is too high, the other cross relaxation between Ce3+ and Er3+ : Er3+ (4I(13/2)) + Ce3+ (F-2(5/2)) -> Er3+ (I-4(15/2)) + Ce3+ (F-2(7/2)) happens, which depopulates the I-4(13/2) level of Er3+ and results in the decrease of the emission intensity and fluorescence lifetime of Er3+ at 1.5 mu m band.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical spectroscopic properties of Er3+-doped alkaline-earth metal modified fluoropho sphate glasses have been investigated experimentally for developing broadband fiber and planar amplifiers. The results show a strong correlation between the alkaline-earth metal content and the spectroscopic parameters such as absorption and emission cross sections, full widths at half-maximum and Judd-Ofelt intensity parameters. It is found that strontium ions could have more influences on the Judd-Ofelt intensity parameters and the absorption and emission cross sections than other alkaline-earth metal ions such as Mg2+, Ca2+, Ba2+. The sample containing 23 mol% strontium fluoride exhibits the maximum emission cross section of 7.58 x 10(-21) cm(2), the broadest full width at half-maximum of 65 nm and the longer lifetime of 8.6 ms among the alkaline-earth metal modified fluorophosphates glasses studied. The Judd-Ofelt intensity parameter Omega(6)s, the emission cross sections and the full widths at half-maximum in the Er3+-doped fluorophosphate glasses studied are larger than in the silicate and phosphate glasses.