987 resultados para Equilibrium rate
Resumo:
Includes bibliography
Resumo:
This paper develops a structural general equilibrium model to analyse the reactions of the nominal exchange rate and the domestic price level to three types of external shock in emerging economies that have limited access to world capital markets. Although the results depend crucially on the type of external shock, each of the two national balance-sheet parameters considered here —the risk premium and the ratio of external indebtedness— exacerbates the reactions of the two endogenous variables without altering the degree of exchange-rate pass-through (erpt). Moreover, flatter Phillips curves, as observed today in many economies, tend to increase erpt. On the basis of these results, the authorities of emerging economies seeking to stabilize markets and limit erpt are advised to minimize the two risk parameters by applying a flexible inflation-targeting regime.
Resumo:
The objective of this work is to develop a non-stoichiometric equilibrium model to study parameter effects in the gasification process of a feedstock in downdraft gasifiers. The non-stoichiometric equilibrium model is also known as the Gibbs free energy minimization method. Four models were developed and tested. First a pure non-stoichiometric equilibrium model called M1 was developed; then the methane content was constrained by correlating experimental data and generating the model M2. A kinetic constraint that determines the apparent gasification rate was considered for model M3 and finally the two aforementioned constraints were implemented together in model M4. Models M2 and M4 showed to be the more accurate among the four developed models with mean RMS (root mean square error) values of 1.25 each.Also the gasification of Brazilian Pinus elliottii in a downdraft gasifier with air as gasification agent was studied. The input parameters considered were: (a) equivalence ratio (0.28-035); (b) moisture content (5-20%); (c) gasification time (30-120 min) and carbon conversion efficiency (80-100%). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Equilibrium melting and controlled cooling experiments were undertaken to constrain the crystallization and cooling histories of tholeiitic basalts recovered by the Ocean Drilling Program drilling of Site 989 on the Southeast Greenland continental margin. Isothermal experiments conducted at 1 atm. and at the fayalite-magnetite-quartz buffer using lava sample Section 163-989B-10R-7 yielded the equilibrium appearance sequence with decreasing temperature: olivine at 1184 ± 2ºC; plagioclase at 1177ºC ± 5ºC; augite at 1167 ± 5ºC; and pigeonite at 1113 ± 12ºC. In controlled cooling experiments using the same starting composition and cooling rates between 10ºC/hr and 2000ºC/hr, we find a significant temperature delay in the crystallization of olivine, plagioclase, and augite (relative to the equilibrium appearance temperature); pigeonite does not form under any dynamic crystallization conditions. Olivine exhibits the largest suppression in appearance temperature (e.g., 30º for 10ºC/hr and >190º at 100ºC/hr), while plagioclase shows the smallest (~10ºC at 10ºC/hr; 30ºC at 100ºC/hr, and ~80ºC at 1000ºC/hr). These results are in marked contrast to those obtained on lunar basalts, which generally show a large suppression of plagioclase crystallization and modest suppression of olivine crystallization with an increased cooling rate. The results we report agree well with the petrography of lavas recovered from Site 989. Furthermore, the textural analysis of run products, representing a large range of cooling rates and quench temperatures (1150ºC to 1000ºC), provide a framework for evaluating cooling conditions necessary for glass formation, rates of plagioclase growth, and kinetic factors governing plagioclase growth morphology. Specifically, we use these insights to interpret the textural and mineralogical features of the unusual compound flow recovered at Site 989. We concluded from the analysis that this flow most likely records multiple breakouts from a distal tube at an abrupt break in slope, possibly a fault scarp, resulting in the formation of a lava fan delta. This interpretation implies that normal faulting of the oldest lava sequences (lower and, possibly, middle series) preceded eruption of Site 989 lavas.
Resumo:
Dissolution rates of calcareous ooze were measured for samples from Deep Sea Drilling Project (DSDP) Site 506, which is in the area of the Galapagos Spreading Center. Using the free-drift method, measurements were carried out at 25 °C and atmospheric pressure. No significant difference in dissolution rates was found among the samples from three holes. However, in the present samples, the concentration of carbonate ion in seawater that is in equilibrium with calcite is 20 to 30% greater than is the case with synthetic calcite. That is, the dissolution rate of calcite under nearequilibrium conditions is greater than that of either synthetic calcite or sediments from the central Pacific (Morse, 1978). These results are consistent with field evidence indicating that the calcium carbonate compensation depth in the Galapagos region is shallower than in most other Pacific regions (Berger et al., 1976).
Resumo:
Improved strategies for synthesis make it possible to expand the range of glycopeptides available for detailed conformational studies. The glycopeptide 1 was synthesized using a new solid phase synthesis of carbohydrates and a convergent coupling to peptide followed by deprotection. Its conformational properties were subjected to NMR analysis and compared with a control peptide 2 prepared by conventional solid phase methods. Whereas peptide 2 fails to manifest any appreciable secondary structure, the glycopeptide 1 does show considerable conformational bias suggestive of an equilibrium between an ordered and a random state. The implications of this ordering effect for the larger issue of protein folding are considered.
Resumo:
We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.
Resumo:
The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions.
Resumo:
Phosphorylation of the alpha-1 subunit of rat Na+,K(+)-ATPase by protein kinase C has been shown previously to decrease the activity of the enzyme in vitro. We have now undertaken an investigation of the mechanism by which this inhibition occurs. Analysis of the phosphorylation of recombinant glutathione S-transferase fusion proteins containing putative cytoplasmic domains of the protein, site-directed mutagenesis, and two-dimensional peptide mapping indicated that protein kinase C phosphorylated the alpha-1 subunit of the rat Na+,K(+)-ATPase within the extreme NH2-terminal domain, on serine-23. The phosphorylation of this residue resulted in a shift in the equilibrium toward the E1 form, as measured by eosin fluorescence studies, and this was associated with a decrease in the apparent K+ affinity of the enzyme, as measured by ATPase activity assays. The rate of transition from E2 to E1 was apparently unaffected by phosphorylation by protein kinase C. These results, together with previous studies that examined the effects of tryptic digestion of Na+,K(+)-ATPase, suggest that the NH2-terminal domain of the alpha-1 subunit, including serine-23, is involved in regulating the activity of the enzyme.
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
In this chapter, the authors use an EGARCH-ECM to estimate the pass-through effects of Foreign Exchange (FX) rate changes and changes in producers' prices for 20 U.K. export sectors. The long-run adjustments of export prices to FX rate changes and changes in producers' prices are within the range of -1.02% (for the Textiles sector) and -17.22% (for the Meat sector). The contemporaneous Pricing-To-Market (PTM) coefficients are within the range of -72.84% (for the Fuels sector) and -8.05% (for the Textiles sector). Short-run FX rate pass-through is not complete even after several months. Rolling EGARCH-ECMs show that the short and long-run effects of changes in FX rate and producers' prices vary substantially, as do asymmetry and volatility estimates before equilibrium is achieved.
Resumo:
Hospitals can experience difficulty in detecting and responding to early signs of patient deterioration leading to late intensive care referrals, excess mortality and morbidity, and increased hospital costs. Our study aims to explore potential indicators of physiological deterioration by the analysis of vital-signs. The dataset used comprises heart rate (HR) measurements from MIMIC II waveform database, taken from six patients admitted to the Intensive Care Unit (ICU) and diagnosed with severe sepsis. Different indicators were considered: 1) generic early warning indicators used in ecosystems analysis (autocorrelation at-1-lag (ACF1), standard deviation (SD), skewness, kurtosis and heteroskedasticity) and 2) entropy analysis (kernel entropy and multi scale entropy). Our preliminary findings suggest that when a critical transition is approaching, the equilibrium state changes what is visible in the ACF1 and SD values, but also by the analysis of the entropy. Entropy allows to characterize the complexity of the time series during the hospital stay and can be used as an indicator of regime shifts in a patient’s condition. One of the main problems is its dependency of the scale used. Our results demonstrate that different entropy scales should be used depending of the level of entropy verified.
Resumo:
This dissertation examines the behavior of the exchange rate under two different scenarios. The first one is characterized by, relatively, low inflation or a situation where prices adjust sluggishly. The second is a high inflation economy where prices respond very rapidly even to unanticipated shocks. In the first one, following a monetary expansion, the exchange rate overshoots, i.e. the nominal exchange rate depreciates at a faster pace than the price level. Under high levels of inflation, prices change faster than the exchange rate so the exchange rate undershoots its long run equilibrium value.^ The standard work in this area, Dornbusch (1976), explains the overshooting process in the context of perfect capital mobility and sluggish adjustment in the goods market. A monetary expansion will make the exchange rate increase beyond its long run equilibrium value. This dissertation expands on Dornbusch's model and provides an analysis of the exchange rate under conditions of currency substitution and price flexibility, characteristics of the Peruvian economy during the hyper inflation process that took place at the end of the 1980's. The results of the modified Dornbusch model reveal that, given a monetary expansion, the change in the price level will be larger than the change in the exchange rate if prices react more than proportionally to the monetary shock.^ We will expect this over-reaction in circumstances of high inflation when the velocity of money is increasing very rapidly. Increasing velocity of money, gives rise to a higher relative price variability which in turn contributes to the appearance of new financial (and also non-financial) instruments that report a higher return than the exchange rate, causing people to switch their demand for foreign exchange to this new assets. In the context of currency substitution, economic agents hoard and use foreign exchange as a store of value. The big decline in output originated by hyper inflation induces people to sell this hoarded money to finance current expenses, increasing the supply of foreign exchange in the market. Both, the decrease in demand and the increase in supply reduce the price of foreign exchange i.e. the real exchange rate. The findings mentioned above are tested using Peruvian data for the period January 1985-July 1990, the results of the econometric estimation confirm our findings in the theoretical model. ^
Resumo:
Since the late 1970's, but particularly since the mid-1980s, the economy of Nicaragua has had persistent and large macroeconomic imbalances, while GDP per-capita has declined to 1950s' levels. By the second half of the 1990s, huge fiscal deficits and a reduction of foreign financing resulted in record hyperinflation. The Sandinista government's (1979–1990) harsh stabilization program in 1988–89 had only modest and short-lived success. It was doomed by their inability to lower the public sector deficit due to the war, plus diminishing financial support from abroad. Hyperinflation stopped only after their 1990 electoral defeat ended the war and massive aid began to flow in. Five years later, macroeconomic stability is still very fragile. A sluggish recovery of export agriculture plus import liberalization, have impeded a reduction of huge trade and current account deficits. Facing the prospects of diminished aid flows, the government's strategy has hinged on the achievement of a real devaluation through a crawling-peg adjustment of the nominal rate. However, at the end of 1995 the situation of the external accounts was still critical, and the modest progress achieved was attributable to cyclical terms-of-trade improvement and changes in the political outlook of agricultural producers. Using a Computable General Equilibrium Model and a Social Accounting Matrix constructed for this dissertation, the importance of structural rigidities in production and demand in explaining such outcome is shown. It is shown that under the plausible structural assumptions incorporated in the model, the role of devaluation in the adjustment process is restricted by structural rigidities. Moreover, contrary to the premise of the orthodox economic thinking behind the economic program, it is the contractionary effect of devaluation more than its expenditure-switching effects that provide the basis for is use in solving the external sector's problems. A fixed nominal exchange rate is found to lead to adverse results. The broader conclusion that emerges from the study is that a new social compact and a rapid increase in infrastructure spending plus fiscal support for the traditional agro-export activities is at the center of a successful adjustment towards external viability in Nicaragua. ^