938 resultados para Equilibrium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limiting solubility of oxygen in liquid nickel in equilibrium withα-alumina and nickel aluminate has been measured by inert gas fusion analysis of suction samples in the temperature range 1730 to 1975 K. The corresponding oxygen potential has been monitored by a solid electrolyte cell consisting of calcia stabilized zirconia as the electrolyte and Mo + MoO2 as the reference electrode. The results can be summarized by the following equations: log(at. pct O) = \frac - 10,005T + 4.944 ( ±0.015)log(atpctO)=T−10005+4944(0015) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn DmO2 /4.606RT = log P O2 1/2 = \frac - 13,550T + 4.411 ( ±0.009)O24606RT=logPO212=T−13550+4411(0009) From simultaneous measurements of the potential and concentration of oxygen in melts, not in thermodynamic equilibrium with alumina and aluminate phases, information on the composition dependence of the activity coefficient and the standard free energy of solution of oxygen is obtained. For the reaction, $\frac{1}{2} O_2 \to \underset{\raise0.3em\hbox{$Missing close brace ΔG o = -72,930 - 7.11T (±840) J gr.at.–1 = + 0.216 at. pct OlogfO=T−500+0216atpctO where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct) in the limit as concentration approaches zero. The oxygen solubility in liquid nickel in equilibrium with solid NiO, evaluated from thermodynamic data, is compared with information reported in the literature. Implications of the results to the deoxidation equilibria of aluminum in nickel are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oxygen content of liquid Ni-Mn alloy equilibrated with spinel solid solution, (Ni,Mn)O. (1 +x)A12O3, and α-Al2O3 has been measured by suction sampling and inert gas fusion analysis. The corresponding oxygen potential of the three-phase system has been determined with a solid state cell incorporating (Y2O3)ThO2 as the solid electrolyte and Cr + Cr2O3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface of the alloy and alumina crucible was obtained using EPMA. The experimental data are compared with a thermodynamic model based on the free energies of formation of end-member spinels, free energy of solution of oxygen in liquid nickel, interaction parameters, and the activities in liquid Ni-Mn alloy and spinel solid solution. Mixing properties of the spinel solid solution are derived from a cation distribution model. The computational results agree with the experimental data on oxygen concentration, potential, and composition of the spinel phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deviation from local equilibrium between Fe–Ni alloy and (Fe,Ni)TiO3 solid solution in the reaction–diffusion zone of the Fe–NiTiO3 couple at 1273 K is evaluated by comparing the measured compositions in the zone with experimentally determined equilibrium tie-lines. The deviation is quantified by computing the Gibbs energy change for the reaction, Fe + NiTiO3 → FeTiO3 + Ni, from measured compositions in the zone and activity data available in the literature. Except near the extremities of the zone, the computed Gibbs energy change is constant, 8.2 kJ mol−1 higher than the standard Gibbs energy change for the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type IA DNA topoisomerases, typically found in bacteria, are essential enzymes that catalyse the DNA relaxation of negative supercoils. DNA gyrase is the only type II topoisomerase that can carry out the opposite reaction (i.e. the introduction of the DNA supercoils). A number of diverse molecules target DNA gyrase. However, inhibitors that arrest the activity of bacterial topoisomerase I at low concentrations remain to be identified. Towards this end, as a proof of principle, monoclonal antibodies that inhibit Mycobacterium smegmatis topoisomerase I have been characterized and the specific inhibition of Mycobacterium smegmatis topoisomerase I by a monoclonal antibody, 2F3G4, at a nanomolar concentration is described. The enzyme-bound monoclonal antibody stimulated the first transesterification reaction leading to enhanced DNA cleavage, without significantly altering the religation activity of the enzyme. The stimulated DNA cleavage resulted in perturbation of the cleavagereligation equilibrium, increasing single-strand nicks and proteinDNA covalent adducts. Monoclonal antibodies with such a mechanism of inhibition can serve as invaluable tools for probing the structure and mechanism of the enzyme, as well as in the design of novel inhibitors that arrest enzyme activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall rate equation for a reaction sequence consisting of a pre-equilibrium and rate-determining steps should not be derived on the basis of the concentration of the intermediate product (X). This is apparently indicated by transition state theory (as the path followed to reach the highest energy transition state is irrelevant), but also proved by a straight-forward mathematical approach. The thesis is further supported by the equations of concurrent reactions as applied to the partitioning of X between the two competing routes (reversal of the pre-equilibrium and formation of product). The rate equation may only be derived rigorously on the basis of the law of mass action. It is proposed that the reactants acquire the overall activation energy prior to the pre-equilibrium, thus forming X in a high-energy state en route to the rate-determining transition state. (It is argued that conventional energy profile diagrams are misleading and need to be reinterpreted.) Also, these arguments invalidate the Michaelis-Menten equation of enzyme kinetics, and necessitate a fundamental revision of our present understanding of enzyme catalysis. (The observed ``saturation kinetics'' possibly arises from weak binding of a second molecule of substrate at the active site; analogous conclusions apply to reactions at surfaces).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been observed that a majority of glaciers in the Himalayas have been retreating. In this paper, we show that there are two major factors which control the advance/retreat of the Himalayan glaciers. They are the slope of the glacier and changes in the equilibrium line altitude. While it is well known, that these factors are important, we propose a new way of combining them and use it to predict retreat. The functional form of this model has been derived from numerical simulations using an ice-flow code. The model has been successfully applied to the movement of eight Himalayan glaciers during the past 25 years. It explains why the Gangotri glacier is retreating while Zemu of nearly the same length is stationary, even if they are subject to similar environmental changes. The model has also been applied to a larger set of glaciers in the Parbati basin, for which retreat based on satellite data is available, though over a shorter time period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We derive exact expressions for the zeroth and the first three spectral moment sum rules for the retarded Green's function and for the zeroth and the first spectral moment sum rules for the retarded self-energy of the inhomogeneous Bose-Hubbard model in nonequilibrium, when the local on-site repulsion and the chemical potential are time-dependent, and in the presence of an external time-dependent electromagnetic field. We also evaluate these expressions for the homogeneous case in equilibrium, where all time dependence and external fields vanish. Unlike similar sum rules for the Fermi-Hubbard model, in the Bose-Hubbard model case, the sum rules often depend on expectation values that cannot be determined simply from parameters in the Hamiltonian like the interaction strength and chemical potential but require knowledge of equal-time many-body expectation values from some other source. We show how one can approximately evaluate these expectation values for the Mott-insulating phase in a systematic strong-coupling expansion in powers of the hopping divided by the interaction. We compare the exact moment relations to the calculated moments of spectral functions determined from a variety of different numerical approximations and use them to benchmark their accuracy. DOI: 10.1103/PhysRevA.87.013628

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing concentrations of atmospheric CO2 influence climate, terrestrial biosphere productivity and ecosystem carbon storage through its radiative, physiological and fertilization effects. In this paper, we quantify these effects for a doubling of CO2 using a low resolution configuration of the coupled model NCAR CCSM4. In contrast to previous coupled climate-carbon modeling studies, we focus on the near-equilibrium response of the terrestrial carbon cycle. For a doubling of CO2, the radiative effect on the physical climate system causes global mean surface air temperature to increase by 2.14 K, whereas the physiological and fertilization on the land biosphere effects cause a warming of 0.22 K, suggesting that these later effects increase global warming by about 10 % as found in many recent studies. The CO2-fertilization leads to total ecosystem carbon gain of 371 Gt-C (28 %) while the radiative effect causes a loss of 131 Gt-C (10 %) indicating that climate warming damps the fertilization-induced carbon uptake over land. Our model-based estimate for the maximum potential terrestrial carbon uptake resulting from a doubling of atmospheric CO2 concentration (285-570 ppm) is only 242 Gt-C. This highlights the limited storage capacity of the terrestrial carbon reservoir. We also find that the terrestrial carbon storage sensitivity to changes in CO2 and temperature have been estimated to be lower in previous transient simulations because of lags in the climate-carbon system. Our model simulations indicate that the time scale of terrestrial carbon cycle response is greater than 500 years for CO2-fertilization and about 200 years for temperature perturbations. We also find that dynamic changes in vegetation amplify the terrestrial carbon storage sensitivity relative to a static vegetation case: because of changes in tree cover, changes in total ecosystem carbon for CO2-direct and climate effects are amplified by 88 and 72 %, respectively, in simulations with dynamic vegetation when compared to static vegetation simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical study of a continuum plasticity field coupled to a Ginzburg-Landau model for superfluidity. The results suggest that a supersolid fraction may appear as a long-lived transient during the time evolution of the plasticity field at higher temperatures where both dislocation climb and glide are allowed. Supersolidity, however, vanishes with annealing. As the temperature is decreased, dislocation climb is arrested and any residual supersolidity due to incomplete annealing remains frozen. Our results may provide a resolution of many perplexing issues concerning a variety of experiments on bulk solid He-4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure-property correlation in the lead-free piezoelectric (1 - x)(Na0.5Bi0.5)TiO3-(x)BaTiO3 has been systematically investigated in detail as a function of composition (0 < x <= 0.11), temperature, electric field, and mechanical impact by Raman scattering, ferroelectric, piezoelectric measurement, x-ray, and neutron powder diffraction methods. Although x-ray diffraction study revealed three distinct composition ranges characterizing different structural features in the equilibrium state at room temperature: (i) monoclinic (Cc) + rhombohedral (R3c) for the precritical compositions, 0 <= x <= 0.05, (ii) cubiclike for 0.06 <= x <= 0.0675, and (iii) morphotropic phase boundary (MPB) like for 0.07 <= x < 0.10, Raman and neutron powder diffraction studies revealed identical symmetry for the cubiclike and the MPB compositions. The cubiclike structure undergoes irreversible phase separation by electric poling as well as by pure mechanical impact. This cubiclike phase exhibits relaxor ferroelectricity in its equilibrium state. The short coherence length (similar to 50A degrees) of the out-of-phase octahedral tilts does not allow the normal ferroelectric state to develop below the dipolar freezing temperature, forcing the system to remain in a dipolar glass state at room temperature. Electric poling helps the dipolar glass state to transform to a normal ferroelectric state with a concomitant enhancement in the correlation length of the out-of-phase octahedral tilt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T-K(o)) in weakly swollen isotropic (L-i) and lamellar (L-alpha) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase L-c melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T-K(o), which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the L-i phase to an L-alpha phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the L-i phase constructed in the parameter space of shear rate ((gamma)) over dot vs. temperature exhibits L-i -> L-c and L-i -> L-alpha transitions above the equilibrium crystallization temperature (T-K(o)), in addition to the irreversible shear-driven nucleation of L-c in the L-i phase below T-K(o). In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic understanding of the noncovalent interactions that influence the structures of the cis conformers and the equilibrium between the cis and the trans conformers, of the X-Pro tertiary amide motifs, is presented based on analyses of H-1-, C-13-NMR and FTIR absorption spectra of two sets of homologous peptides, X-Pro-Aib-OMe and X-Pro-NH-Me (where X is acetyl, propionyl, isobutyryl and pivaloyl), in solvents of varying polarities. First, this work shows that the cis conformers of any X-Pro tertiary amide motif, including Piv-Pro, are accessible in the new motifs X-Pro-Aib-OMe, in solution. These conformers are uniquely observable by FTIR spectroscopy at ambient temperatures and by NMR spectroscopy from temperatures as high as 273 K. This is made possible by the persistent presence of n(i-1i)* interactions at Aib, which also influence the disappearance of steric effects at these cis X-Pro rotamers. Second, contrary to conventional understanding, the energy contribution of steric effects to the cis/trans equilibrium at the X-Pro motifs is found to be nonvariant (0.54 +/- 0.02 kcal/mol) with increase in steric bulk on the X group. Third, the current studies provide direct evidence for the weak intramolecular interactions namely the n(i-1i)*, the N-Pro center dot center dot center dot Hi+1 (C(5)a), and the C-7 hydrogen bond that operate and influence the structures, stabilities, and dynamics between different conformational states of X-Pro tertiary amide motifs. NMR and IR spectral data suggest that the cis conformers of X-Pro motifs are ensembles of short-lived rotamers about the C-X-N-Pro bond. (c) 2013 Wiley Periodicals, Inc. Biopolymers 101: 66-77, 2014.