908 resultados para Environmental objective function
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
We derived a framework in integer programming, based on the properties of a linear ordering of the vertices in interval graphs, that acts as an edge completion model for obtaining interval graphs. This model can be applied to problems of sequencing cutting patterns, namely the minimization of open stacks problem (MOSP). By making small modifications in the objective function and using only some of the inequalities, the MOSP model is applied to another pattern sequencing problem that aims to minimize, not only the number of stacks, but also the order spread (the minimization of the stack occupation problem), and the model is tested.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
An intensive use of dispersed energy resources is expected for future power systems, including distributed generation, especially based on renewable sources, and electric vehicles. The system operation methods and tool must be adapted to the increased complexity, especially the optimal resource scheduling problem. Therefore, the use of metaheuristics is required to obtain good solutions in a reasonable amount of time. This paper proposes two new heuristics, called naive electric vehicles charge and discharge allocation and generation tournament based on cost, developed to obtain an initial solution to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach and presenting a very small error concerning the objective function with a low execution time for the scenario with 2000 vehicles.
Resumo:
A sustentabilidade do sistema energético é crucial para o desenvolvimento económico e social das sociedades presentes e futuras. Para garantir o bom funcionamento dos sistemas de energia actua-se, tipicamente, sobre a produção e sobre as redes de transporte e de distribuição. No entanto, a integração crescente de produção distribuída, principalmente nas redes de distribuição de média e de baixa tensão, a liberalização dos mercados energéticos, o desenvolvimento de mecanismos de armazenamento de energia, o desenvolvimento de sistemas automatizados de controlo de cargas e os avanços tecnológicos das infra-estruturas de comunicação impõem o desenvolvimento de novos métodos de gestão e controlo dos sistemas de energia. O contributo deste trabalho é o desenvolvimento de uma metodologia de gestão de recursos energéticos num contexto de SmartGrids, considerando uma entidade designada por VPP que gere um conjunto de instalações (unidades produtoras, consumidores e unidades de armazenamento) e, em alguns casos, tem ao seu cuidado a gestão de uma parte da rede eléctrica. Os métodos desenvolvidos contemplam a penetração intensiva de produção distribuída, o aparecimento de programas de Demand Response e o desenvolvimento de novos sistemas de armazenamento. São ainda propostos níveis de controlo e de tomada de decisão hierarquizados e geridos por entidades que actuem num ambiente de cooperação mas também de concorrência entre si. A metodologia proposta foi desenvolvida recorrendo a técnicas determinísticas, nomeadamente, à programação não linear inteira mista, tendo sido consideradas três funções objectivo distintas (custos mínimos, emissões mínimas e cortes de carga mínimos), originando, posteriormente, uma função objectivo global, o que permitiu determinar os óptimos de Pareto. São ainda determinados os valores dos custos marginais locais em cada barramento e consideradas as incertezas dos dados de entrada, nomeadamente, produção e consumo. Assim, o VPP tem ao seu dispor um conjunto de soluções que lhe permitirão tomar decisões mais fundamentadas e de acordo com o seu perfil de actuação. São apresentados dois casos de estudo. O primeiro utiliza uma rede de distribuição de 32 barramentos publicada por Baran & Wu. O segundo caso de estudo utiliza uma rede de distribuição de 114 barramentos adaptada da rede de 123 barramentos do IEEE.
Resumo:
The aim of this contribution is to extend the techniques of composite materials design to non-linear material behaviour and apply it for design of new materials for passive vibration control. As a first step a computational tool allowing determination of macroscopic optimized one-dimensional isolator behaviour was developed. Voigt, Maxwell, standard and more complex material models can be implemented. Objective function considers minimization of the initial reaction and/or displacement peak as well as minimization of the steady-state amplitude of reaction and/or displacement. The complex stiffness approach is used to formulate the governing equations in an efficient way. Material stiffness parameters are assumed as non-linear functions of the displacement. The numerical solution is performed in the complex space. The steady-state solution in the complex space is obtained by an iterative process based on the shooting method which imposes the conditions of periodicity with respect to the known value of the period. Extension of the shooting method to the complex space is presented and verified. Non-linear behaviour of material parameters is then optimized by generic probabilistic meta-algorithm, simulated annealing. Dependence of the global optimum on several combinations of leading parameters of the simulated annealing procedure, like neighbourhood definition and annealing schedule, is also studied and analyzed. Procedure is programmed in MATLAB environment.
Resumo:
The Internet of Things (IoT) has emerged as a paradigm over the last few years as a result of the tight integration of the computing and the physical world. The requirement of remote sensing makes low-power wireless sensor networks one of the key enabling technologies of IoT. These networks encompass several challenges, especially in communication and networking, due to their inherent constraints of low-power features, deployment in harsh and lossy environments, and limited computing and storage resources. The IPv6 Routing Protocol for Low Power and Lossy Networks (RPL) [1] was proposed by the IETF ROLL (Routing Over Low-power Lossy links) working group and is currently adopted as an IETF standard in the RFC 6550 since March 2012. Although RPL greatly satisfied the requirements of low-power and lossy sensor networks, several issues remain open for improvement and specification, in particular with respect to Quality of Service (QoS) guarantees and support for mobility. In this paper, we focus mainly on the RPL routing protocol. We propose some enhancements to the standard specification in order to provide QoS guarantees for static as well as mobile LLNs. For this purpose, we propose OF-FL (Objective Function based on Fuzzy Logic), a new objective function that overcomes the limitations of the standardized objective functions that were designed for RPL by considering important link and node metrics, namely end-to-end delay, number of hops, ETX (Expected transmission count) and LQL (Link Quality Level). In addition, we present the design of Co-RPL, an extension to RPL based on the corona mechanism that supports mobility in order to overcome the problem of slow reactivity to frequent topology changes and thus providing a better quality of service mainly in dynamic networks application. Performance evaluation results show that both OF-FL and Co-RPL allow a great improvement when compared to the standard specification, mainly in terms of packet loss ratio and average network latency. 2015 Elsevier B.V. Al
Resumo:
The purpose of this work is to present an algorithm to solve nonlinear constrained optimization problems, using the filter method with the inexact restoration (IR) approach. In the IR approach two independent phases are performed in each iteration—the feasibility and the optimality phases. The first one directs the iterative process into the feasible region, i.e. finds one point with less constraints violation. The optimality phase starts from this point and its goal is to optimize the objective function into the satisfied constraints space. To evaluate the solution approximations in each iteration a scheme based on the filter method is used in both phases of the algorithm. This method replaces the merit functions that are based on penalty schemes, avoiding the related difficulties such as the penalty parameter estimation and the non-differentiability of some of them. The filter method is implemented in the context of the line search globalization technique. A set of more than two hundred AMPL test problems is solved. The algorithm developed is compared with LOQO and NPSOL software packages.
Resumo:
Master Thesis
Resumo:
Tipicamente as redes elétricas de distribuição apresentam uma topologia parcialmente malhada e são exploradas radialmente. A topologia radial é obtida através da abertura das malhas nos locais que otimizam o ponto de operação da rede, através da instalação de aparelhos de corte que operam normalmente abertos. Para além de manterem a topologia radial, estes equipamentos possibilitam também a transferência de cargas entre saídas, aquando da ocorrência de defeitos. As saídas radiais são ainda dotadas de aparelhos de corte que operam normalmente fechados, estes têm como objetivo maximizar a fiabilidade e isolar defeitos, minimizando a área afetada pelos mesmos. Assim, na presente dissertação são desenvolvidos dois algoritmos determinísticos para a localização ótima de aparelhos de corte normalmente abertos e fechados, minimizando a potência ativa de perdas e o custo da energia não distribuída. O algoritmo de localização de aparelhos de corte normalmente abertos visa encontrar a topologia radial ótima que minimiza a potência ativa de perdas. O método é desenvolvido em ambiente Matlab – Tomlab, e é formulado como um problema de programação quadrática inteira mista. A topologia radial ótima é garantida através do cálculo de um trânsito de potências ótimo baseado no modelo DC. A função objetivo é dada pelas perdas por efeito de Joule. Por outro lado o problema é restringido pela primeira lei de Kirchhoff, limites de geração das subestações, limites térmicos dos condutores, trânsito de potência unidirecional e pela condição de radialidade. Os aparelhos de corte normalmente fechados são localizados ao longo das saídas radiais obtidas pelo anterior algoritmo, e permite minimizar o custo da energia não distribuída. No limite é possível localizar um aparelho de corte normalmente fechado em todas as linhas de uma rede de distribuição, sendo esta a solução que minimiza a energia não distribuída. No entanto, tendo em conta que a cada aparelho de corte está associado um investimento, é fundamental encontrar um equilíbrio entre a melhoria de fiabilidade e o investimento. Desta forma, o algoritmo desenvolvido avalia os benefícios obtidos com a instalação de aparelhos de corte normalmente fechados, e retorna o número e a localização dos mesmo que minimiza o custo da energia não distribuída. Os métodos apresentados são testados em duas redes de distribuição reais, exploradas com um nível de tensão de 15 kV e 30 kV, respetivamente. A primeira rede é localizada no distrito do Porto e é caraterizada por uma topologia mista e urbana. A segunda rede é localizada no distrito de Bragança e é caracterizada por uma topologia maioritariamente aérea e rural.
Resumo:
Economics is a social science which, therefore, focuses on people and on the decisions they make, be it in an individual context, or in group situations. It studies human choices, in face of needs to be fulfilled, and a limited amount of resources to fulfill them. For a long time, there was a convergence between the normative and positive views of human behavior, in that the ideal and predicted decisions of agents in economic models were entangled in one single concept. That is, it was assumed that the best that could be done in each situation was exactly the choice that would prevail. Or, at least, that the facts that economics needed to explain could be understood in the light of models in which individual agents act as if they are able to make ideal decisions. However, in the last decades, the complexity of the environment in which economic decisions are made and the limits on the ability of agents to deal with it have been recognized, and incorporated into models of decision making in what came to be known as the bounded rationality paradigm. This was triggered by the incapacity of the unboundedly rationality paradigm to explain observed phenomena and behavior. This thesis contributes to the literature in three different ways. Chapter 1 is a survey on bounded rationality, which gathers and organizes the contributions to the field since Simon (1955) first recognized the necessity to account for the limits on human rationality. The focus of the survey is on theoretical work rather than the experimental literature which presents evidence of actual behavior that differs from what classic rationality predicts. The general framework is as follows. Given a set of exogenous variables, the economic agent needs to choose an element from the choice set that is avail- able to him, in order to optimize the expected value of an objective function (assuming his preferences are representable by such a function). If this problem is too complex for the agent to deal with, one or more of its elements is simplified. Each bounded rationality theory is categorized according to the most relevant element it simplifes. Chapter 2 proposes a novel theory of bounded rationality. Much in the same fashion as Conlisk (1980) and Gabaix (2014), we assume that thinking is costly in the sense that agents have to pay a cost for performing mental operations. In our model, if they choose not to think, such cost is avoided, but they are left with a single alternative, labeled the default choice. We exemplify the idea with a very simple model of consumer choice and identify the concept of isofin curves, i.e., sets of default choices which generate the same utility net of thinking cost. Then, we apply the idea to a linear symmetric Cournot duopoly, in which the default choice can be interpreted as the most natural quantity to be produced in the market. We find that, as the thinking cost increases, the number of firms thinking in equilibrium decreases. More interestingly, for intermediate levels of thinking cost, an equilibrium in which one of the firms chooses the default quantity and the other best responds to it exists, generating asymmetric choices in a symmetric model. Our model is able to explain well-known regularities identified in the Cournot experimental literature, such as the adoption of different strategies by players (Huck et al. , 1999), the inter temporal rigidity of choices (Bosch-Dom enech & Vriend, 2003) and the dispersion of quantities in the context of di cult decision making (Bosch-Dom enech & Vriend, 2003). Chapter 3 applies a model of bounded rationality in a game-theoretic set- ting to the well-known turnout paradox in large elections, pivotal probabilities vanish very quickly and no one should vote, in sharp contrast with the ob- served high levels of turnout. Inspired by the concept of rhizomatic thinking, introduced by Bravo-Furtado & Côrte-Real (2009a), we assume that each per- son is self-delusional in the sense that, when making a decision, she believes that a fraction of the people who support the same party decides alike, even if no communication is established between them. This kind of belief simplifies the decision of the agent, as it reduces the number of players he believes to be playing against { it is thus a bounded rationality approach. Studying a two-party first-past-the-post election with a continuum of self-delusional agents, we show that the turnout rate is positive in all the possible equilibria, and that it can be as high as 100%. The game displays multiple equilibria, at least one of which entails a victory of the bigger party. The smaller one may also win, provided its relative size is not too small; more self-delusional voters in the minority party decreases this threshold size. Our model is able to explain some empirical facts, such as the possibility that a close election leads to low turnout (Geys, 2006), a lower margin of victory when turnout is higher (Geys, 2006) and high turnout rates favoring the minority (Bernhagen & Marsh, 1997).
Resumo:
In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.
Resumo:
When habits are introduced multiplicatively in a capital accumulation model, the consumers' objective function might fail to be concave. In this paper we provide conditions aimed at guaranteeing the existence of interior solutions to the consumers' problem. We also characterize the equilibrium path of two growth models with multiplicative habits: the internal habit formation model, where individual habits coincide with own past consumption, and the external habit formation (or catching-up with the Joneses) model, where habits arise from the average past consumption in the economy. We show that the introduction of external habits makes the equilibrium path inefficient during the transition towards the balanced growth path. We characterize in this context the optimal tax policy.
Resumo:
The aim of this paper is to investigate the welfare effect of a change in the public firms objective function in oligopoly when the government takes into account the distortionary effect of rising funds by taxation (shadow cost of public funds). We analyze the impact of a shift from welfare- to profit-maximizing behaviour of the public firm on the timing of competition by endogenizing the determination of simultaneous (Nash-Cournot) versus sequential (Stackelberg) games using the game with observable delay proposed by Hamilton and Slutsky (1990). Differently from previous work that assumed the timing of competition, we show that, absent efficiency gains, instructing the public firm to play as a private one never increases welfare. Moreover, even when large efficiency gains result from the shift in public firm's objective, an inefficient public firm that maximizes welfare may be preferred.