994 resultados para Environmental isotopes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous seep-carbonates are exposed at mud volcanoes in the eastern Mediterranean Sea. The 13C-depleted aragonitic carbonates formed as a consequence of the anaerobic oxidation of methane in a shallow sub-surface environment. Besides the macroscopically visible cavernous fabric, extensive carbonate corrosion was revealed by detailed analysis. After erosion of the background sediments, the carbonates became exposed to oxygenated bottom waters that are periodically influenced by the release of methane and upward diffusion of hydrogen sulphide. We suggest that carbonate corrosion resulted from acidity locally produced by aerobic oxidation of methane and hydrogen sulphide in the otherwise, with respect to aragonite, oversaturated bottom waters. Although it remains to be tested whether the mechanisms of carbonate dissolution suggested herein are valid, this study reveals that a better estimate of the significance of corrosion is required to assess the amount of methane-derived carbon that is permanently fixed in seep-carbonates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glacial marine isotope stage 14 (MIS 14) appears in many climate records as an unusually warm glacial. During this period an almost monospecific, up to 1.5 m thick, laminated layer of the giant diatom Ethmodiscus rex has been deposited below the South Atlantic Subtropical Gyre. This oligotrophic region is today less favorable for diatom growth with sediments typically consisting of calcareous nannofossil oozes. We have reconstructed temperatures and the stable oxygen isotopic compositions of sea surface and thermocline water (d18Ow) from planktonic foraminiferal (Globigerinoides ruber and Globorotalia inflata) Mg/Ca and stable oxygen isotopes to test whether perturbations in surface ocean conditions contributed to the deposition of the diatom layer at ~530 kyr B.P. Temperatures and d18Ow values reconstructed from this diatom ooze interval are highly variable, with maxima similar to interglacial values. Since the area of the Ethmodiscus oozes resembles the region where Agulhas rings are present, we interpret these hydrographic changes to reflect the varying influence of warm and saline water of Indian Ocean origin that entered the Subtropical Gyre trapped in Agulhas rings. The formation of the Ethmodiscus oozes is associated with a period of maximum Agulhas leakage and a maximum frequency of Agulhas ring formation caused by a termination-type position of the Subtropical Front during the unusual warm MIS 14. The input of silica through the Agulhas rings enabled the shift in primary production from calcareous nannoplankton to diatoms, leading to the deposition of the massive diatom oozes.