959 resultados para Environment Interactions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Key message Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Context Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. Aims This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Methods Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Results Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Conclusion Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Progress in crop improvement is limited by the ability to identify favourable combinations of genotypes (G) and management practices (M) in relevant target environments (E) given the resources available to search among the myriad of possible combinations. To underpin yield advance we require prediction of phenotype based on genotype. In plant breeding, traditional phenotypic selection methods have involved measuring phenotypic performance of large segregating populations in multi-environment trials and applying rigorous statistical procedures based on quantitative genetic theory to identify superior individuals. Recent developments in the ability to inexpensively and densely map/sequence genomes have facilitated a shift from the level of the individual (genotype) to the level of the genomic region. Molecular breeding strategies using genome wide prediction and genomic selection approaches have developed rapidly. However, their applicability to complex traits remains constrained by gene-gene and gene-environment interactions, which restrict the predictive power of associations of genomic regions with phenotypic responses. Here it is argued that crop ecophysiology and functional whole plant modelling can provide an effective link between molecular and organism scales and enhance molecular breeding by adding value to genetic prediction approaches. A physiological framework that facilitates dissection and modelling of complex traits can inform phenotyping methods for marker/gene detection and underpin prediction of likely phenotypic consequences of trait and genetic variation in target environments. This approach holds considerable promise for more effectively linking genotype to phenotype for complex adaptive traits. Specific examples focused on drought adaptation are presented to highlight the concepts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis investigated the basis for availability of iron (Fe) and zinc (Zn) content in different banana fruits grown in Uganda and Australia. Rather than micronutrient content levels in different banana cultivar, genotype and environment interactions explained much of the differences. Such information should provide important insights for future developments in the biofortification of banana. Bananas consumed in Uganda did not contain sufficient levels of Fe and Zn that meet the nutrient requirements for vulnerable groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lupus erythematosus (LE) is a chronic, heterogeneous autoimmune disorder with abnormal immune responses, including production of autoantibodies and immune complexes. Clinical presentations of the disease range from mild cutaneous manifestations to a more generalised systemic involvement of internal organs. Cutaneous (CLE) forms are further subclassified into discoid LE (DLE), subacute cutaneous LE (SCLE) and acute cutaneous lupus erythematosus (ACLE), and may later progress to systemic disease (SLE). Both genetic and environmental factors contribute to the disease, although the precise aetiology is still elusive. Furthermore, complex gene-gene or gene-environment interactions may result in different subphenotypes of lupus. The genetic background of CLE is poorly known and only a few genes are confirmed, while the number of robust genetic associations in SLE exceeds 30. The aim of this thesis was to characterise the recruited patients clinically, and identify genetic variants conferring susceptibility to cutaneous variants of LE. Given that cutaneous and systemic disease may share underlying genetic factors, putative CLE candidate genes for genotyping were selected among those showing strong evidence of association in SLE. The correlation between relevant clinical manifestations and risk genotypes was investigated in order to find specific subphenotype associations. In addition, epistatic interactions in SLE were studied. Finally, the role of tissue degrading matrix metalloproteinases (MMP) in LE tissue injury was explored. These studies were conducted in Finnish case-control and family cohort, and Swedish case-control cohort. The clinical picture of the patients in terms of cutaneous, haematological and immunological findings resembled that described in the contemporary literature. However, the proportion of daily smokers was very high supporting the role of smoking in disease aetiology. The results confirmed that, even though clinically distinct entities, CLE and SLE share predisposing genetic factors. For the first time it was shown that known SLE susceptibility genes IRF5 and TYK2 also increase the risk of CLE. A tendency toward gene-gene interaction between these genes was found in SLE. As a remarkable novel finding, it was observed that ITGAM polymorphisms associated even more strongly to DLE than SLE, and the risk estimates were substantially higher than those reported for SLE. Several other recently identified SLE susceptibility genes showed signs of good or modest association especially in DLE. Subphenotype analyses indicated possible associations to clinical features, but marginally significant results reflected lack of sufficient power for these studies. Thorough immunohistochemical analyses of several MMPs demonstrated a role in epidermal changes and dermal tissue remodelling in diseased skin, and suggested that targeted action using selective MMP inhibitors may reduce lupus-induced damage in inflamed tissues. In conclusion, the results provide an insight into the genetics of CLE and demonstrate that genetic predisposition is at least in part shared between cutaneous and systemic variants of LE. This doctoral study has contributed IRF5, TYK2, ITGAM and several other novel genes to the so far short list of genes implicated in CLE susceptibility. Detailed examination of the function of these genes in CLE pathogenesis warrants further studies. Furthermore, the results support the need of subphenotype analysis with sample sizes large enough to reveal possible specific disease associations in order to better understand the heterogeneous nature and clinical specificities of the disease. Comprehensive analysis of clinical data suggests that smoking is an environmental triggering factor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Individuals with a particular variant of the gene phosphoglucose isomerase (Pgi ) have been shown to have superior dispersal capacity and fecundity in the Glanville fritillary butterfly (Melitaea cinxia), raising questions about the mechanisms that maintain polymorphism in this gene in the field. Here, we investigate how variation in the Pgi genotype affects female and male life history under controlled conditions. The most striking effect is the longer lifespan of genotypes with high dispersal capacity, especially in nonreproducing females. Butterflies use body reserves for somatic maintenance and reproduction, but
different resources (in thorax versus abdomen) are used under dissimilar conditions, with some interactions with the Pgi genotype. These results indicate life-history trade-offs that involve resource allocation and genotype!environment interactions, and these trade-offs are likely to contribute to the maintenance of Pgi polymorphism in the natural populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alcohol and other substance use disorders (SUDs) result in great costs and suffering for individuals and families and constitute a notable public health burden. A multitude of factors, ranging from biological to societal, are associated with elevated risk of SUDs, but at the level of individuals, one of the best predictors is a family history of SUDs. Genetically informative twin and family studies have consistently indicated this familial risk to be mainly genetic. In addition, behavioral and temperamental factors such as early initiation of substance use and aggressiveness are associated with the development of SUDs. These familial, behavioral and temperamental risk factors often co-occur, but their relative importance is not well known. People with SUDs have also been found to differ from healthy controls in various domains of cognitive functioning, with poorer verbal ability being among the most consistent findings. However, representative population-based samples have rarely been used in neuropsychological studies of SUDs. In addition, both SUDs and cognitive abilities are influenced by genetic factors, but whether the co-variation of these traits might be partly explained by overlapping genetic influences has not been studied. Problematic substance use also often co-occurs with low educational level, but it is not known whether these outcomes share part of their underlying genetic influences. In addition, educational level may moderate the genetic etiology of alcohol problems, but gene-environment interactions between these phenomena have also not been widely studied. The incidence of SUDs peaks in young adulthood rendering epidemiological studies in this age group informative. This thesis investigated cognitive functioning and other correlates of SUDs in young adulthood in two representative population-based samples of young Finnish adults, one of which consisted of monozygotic and dizygotic twin pairs enabling genetically informative analyses. Using data from the population-based Mental Health in Early Adulthood in Finland (MEAF) study (n=605), the lifetime prevalence of DSM-IV any substance dependence or abuse among persons aged 21—35 years was found to be approximately 14%, with a majority of the diagnoses being alcohol use disorders. Several correlates representing the domains of behavioral and affective factors, parental factors, early initiation of substance use, and educational factors were individually associated with SUDs. The associations between behavioral and affective factors (attention or behavior problems at school, aggression, anxiousness) and SUDs were found to be largely independent of factors from other domains, whereas daily smoking and low education were still associated with SUDs after adjustment for behavioral and affective factors. Using a wide array of neuropsychological tests in the MEAF sample and in a subsample (n=602) of the population-based FinnTwin16 (FT16) study, consistent evidence of poorer verbal cognitive ability related to SUDs was found. In addition, participants with SUDs performed worse than those without disorders in a task assessing psychomotor processing speed in the MEAF sample, whereas no evidence of more specific cognitive deficits was found in either sample. Biometrical structural equation models of the twin data suggested that both alcohol problems and verbal ability had moderate heritabilities (0.54—0.72), and that their covariation could be explained by correlated genetic influences (genetic correlations -0.20 to -0.31). The relationship between educational level and alcohol problems, studied in the full epidemiological FT16 sample (n=4,858), was found to reflect both genetic correlation and gene-environment interaction. The co-occurrence of low education and alcohol problems was influenced by overlapping genetic factors. In addition, higher educational level was associated with increased relative importance of genetic influences on alcohol problems, whereas environmental influences played a more important role in young adults with lower education. In conclusion, SUDs, especially alcohol abuse and dependence, are common among young Finnish adults. Behavioral and affective factors are robustly related to SUDs independently of many other factors, and compared to healthy peers, young adults who have had SUDs during their life exhibit significantly poorer verbal cognitive ability, and possibly less efficient psychomotor processing. Genetic differences between individuals explain a notable proportion of individual differences in risk of alcohol dependence, verbal ability, and educational level, and the co-occurrence of alcohol problems with poorer verbal cognition and low education is influenced by shared genetic backgrounds. Finally, various environmental factors related to educational level in young adulthood moderate the relative importance of genetic factors influencing the risk of alcohol problems, possibly reflecting differences in social control mechanisms related to educational level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais frequente, depois da doença de Alzheimer, com uma incidência de aproximadamente 3,3% na população brasileira acima dos 60 anos. Ela é caracterizada por uma perda dos neurônios dopaminérgicos da parte compacta da substância negra e pela presença de inclusões protéicas intracelulares denominadas corpúsculos de Lewy nos neurônios sobreviventes. A DP tem uma etiologia complexa que envolve interações genes-ambiente e múltiplos genes de susceptibilidade. Nesse contexto, mutações de perda de função no gene da glicocerebrosidase (GBA) têm sido bem validadas como importantes fatores de risco para a DP. Esse gene está localizado na região 1q21 e compreende 11 exons que codificam a enzima lisossômica glicocerebrosidase. O principal objetivo deste estudo foi investigar se alterações no gene GBA constituem um fator de predisposição para o desenvolvimento da DP na população brasileira. Para isso, um grupo de 126 pacientes brasileiros, não-aparentados, com DP (24 casos familiares e 102 isolados; idade média 66,4 11,4) foram analisados para mutações no GBA através do seqüenciamento completo de todos os exons e alguns íntrons. Sete alterações e um alelo recombinante, anteriormente encontrados em pacientes com a DP analisados em outros estudos, foram detectados (K(-)27R, IVS2+1G>A, N370S, L444P, T369M, A456P, E326K e RecNciI), assim como, uma variante nunca antes identificada associada à DP (G325G) e uma nova mutação (W378C), num total de 18 pacientes (14,3%). Além disso, foram encontradas três alterações intrônicas (c.454+47G>A, c.589-86A>G e c.1225-34C>A), que constam do banco de SNPs, entretanto, não foram associadas a nenhuma doença. Dentre todas as variantes identificadas, três são comprovadamente patogênicas (IVS2+1G>A, L444P e N370S) e foram encontradas em 5,5% da amostra, não sendo detectadas na amostra controle, indicando uma freqüência significativamente alta dessas mutações em pacientes com DP quando comparadas aos controles (P=0,0033). Esses resultados reforçam a associação entre o gene GBA e a DP na população brasileira, além de apoiar a hipótese de que alterações nesse gene representam um importante fator de susceptibilidade ao desenvolvimento da DP

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been an increasing interest in the use of unconventional materials and morphologies in robotic systems because the underlying mechanical properties (such as body shapes, elasticity, viscosity, softness, density and stickiness) are crucial research topics for our in-depth understanding of embodied intelligence. The detailed investigations of physical system-environment interactions are particularly important for systematic development of technologies and theories of emergent adaptive behaviors. Based on the presentations and discussion in the Future Emerging Technology (fet11) conference, this article introduces the recent technological development in the field of soft robotics, and speculates about the implications and challenges in the robotics and embodied intelligence research. © Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Legged locomotion of biological systems can be viewed as a self-organizing process of highly complex system-environment interactions. Walking behavior is, for example, generated from the interactions between many mechanical components (e.g., physical interactions between feet and ground, skeletons and muscle-tendon systems), and distributed informational processes (e.g., sensory information processing, sensory-motor control in central nervous system, and reflexes) [21]. An interesting aspect of legged locomotion study lies in the fact that there are multiple levels of self-organization processes (at the levels of mechanical dynamics, sensory-motor control, and learning). Previously, the self-organization of mechanical dynamics was nicely demonstrated by the so-called Passive Dynamic Walkers (PDWs; [18]). The PDW is a purely mechanical structure consisting of body, thigh, and shank limbs that are connected by passive joints. When placed on a shallow slope, it exhibits natural bipedal walking dynamics by converting potential to kinetic energy without any actuation. An important contribution of these case studies is that, if designed properly, mechanical dynamics can generate a relatively complex locomotion dynamics, on the one hand, and the mechanical dynamics induces self-stability against small disturbances without any explicit control of motors, on the other. The basic principle of the mechanical self-stability appears to be fairly general that there are several different physics models that exhibit similar characteristics in different kinds of behaviors (e.g., hopping, running, and swimming; [2, 4, 9, 16, 19]), and a number of robotic platforms have been developed based on them [1, 8, 13, 22]. © 2009 Springer London.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is much to gain from providing walking machines with passive dynamics, e.g. by including compliant elements in the structure. These elements can offer interesting properties such as self-stabilization, energy efficiency and simplified control. However, there is still no general design strategy for such robots and their controllers. In particular, the calibration of control parameters is often complicated because of the highly nonlinear behavior of the interactions between passive components and the environment. In this article, we propose an approach in which the calibration of a key parameter of a walking controller, namely its intrinsic frequency, is done automatically. The approach uses adaptive frequency oscillators to automatically tune the intrinsic frequency of the oscillators to the resonant frequency of a compliant quadruped robot The tuning goes beyond simple synchronization and the learned frequency stays in the controller when the robot is put to halt. The controller is model free, robust and simple. Results are presented illustrating how the controller can robustly tune itself to the robot, as well as readapt when the mass of the robot is changed. We also provide an analysis of the convergence of the frequency adaptation for a linearized plant, and show how that analysis is useful for determining which type of sensory feedback must be used for stable convergence. This approach is expected to explain some aspects of developmental processes in biological and artificial adaptive systems that "develop" through the embodied system-environment interactions. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Western populations are living longer. Ageing decline in muscle mass and strength (i.e. sarcopenia) is becoming a growing public health problem, as it contributes to the decreased capacity for independent living. It is thus important to determine those genetic factors that interact with ageing and thus modulate functional capacity and skeletal muscle phenotypes in older people. It would be also clinically relevant to identify 'unfavourable' genotypes associated with accelerated sarcopenia. In this review, we summarized published information on the potential associations between some genetic polymorphisms and muscle phenotypes in older people. A special emphasis was placed on those candidate polymorphisms that have been more extensively studied, i.e. angiotensin-converting enzyme (ACE) gene I/D, α-actinin-3 (ACTN3) R577X, and myostatin (MSTN) K153R, among others. Although previous heritability studies have indicated that there is an important genetic contribution to individual variability in muscle phenotypes among old people, published data on specific gene variants are controversial. The ACTN3 R577X polymorphism could influence muscle function in old women, yet there is controversy with regards to which allele (R or X) might play a 'favourable' role. Though more research is needed, up-to-date MSTN genotype is possibly the strongest candidate to explain variance among muscle phenotypes in the elderly. Future studies should take into account the association between muscle phenotypes in this population and complex gene-gene and gene-environment interactions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key environmental signals involved in its induction have heretofore remained poorly understood. By surveying multiple strain backgrounds and a large number of growth conditions, we show that limitation for fermentable carbon sources coupled with a rich nitrogen source is the primary trigger for the colony morphology response in budding yeast. Using knockout mutants and transposon-mediated mutagenesis, we demonstrate that two key signaling networks regulating this response are the filamentous growth MAP kinase cascade and the Ras-cAMP-PKA pathway. We further show synergistic epistasis between Rim15, a kinase involved in integration of nutrient signals, and other genes in these pathways. Ploidy, mating-type, and genotype-by-environment interactions also appear to play a role in the controlling colony morphology. Our study highlights the high degree of network reuse in this model eukaryote; yeast use the same core signaling pathways in multiple contexts to integrate information about environmental and physiological states and generate diverse developmental outputs.