966 resultados para Entomopathogenic bacterium
Resumo:
OBJECTIVE: To assess the association of vaginal commensal and low grade pathogenic bacteria including Ureaplasma parvum, Ureaplasma urealyticum, Mycoplasma hominis, Mycoplasma genitalium, Group B Streptococcus (GBS), and Gardnerella vaginalis, in women who delivered preterm at less than 37 weeks gestation in the presence or absence of inflammation of the chorioamnionitic membranes.
METHODS: A case control study involving women who delivered before 37 weeks gestation with and without inflammation of chorioamnionitic membranes. A total of 57 placental samples were histologically examined for polymorphonuclear leukocyte infiltration of placental tissue for evidence of chorioamnionitis, and by type-specific nucleic acid amplification for evidence of infection with one or more of the target bacteria. Demographic data was collected for each mother.
RESULTS: Amongst the 57 placental samples, 42.1% had chorioamnionitis and 24.6% delivered in the second trimester of pregnancy; U. parvum, U. urealyticum, G. vaginalis and GBS were all detected in the study with respective prevalence of 19.3%, 3.5%, 17.5% and 15.8%; M.genitalium and M. hominis were not detected. U. parvum was significantly associated with chorioamnionitis (p value = 0.02; OR 5.0; (95% CI 1.2-21.5) and was more common in women who delivered in the second (35.7%) compared to the third trimester of pregnancy (13.9%). None of the other bacteria were associated with chorioamnionitis or earlier delivery and all G.vaginalis positive women delivered in the third trimester of pregnancy (p value 0.04).
CONCLUSIONS: The detection of U. parvum in placental tissue was significantly associated with acute chorioamnionitis in women presenting in extreme preterm labour.
Resumo:
In continental Portugal no information is available concerning the occurrence of entomopathogenic nematodes. During a survey in several different habitats from the southern regions of the country, several isolates where identified as Steinernema feltiae. This represents the first report of an entomopathogenic nematode genus for continental Portugal.
Resumo:
“Diversidade genética dos nemátodes entomopatogénicos (Nematoda: Steinernematidae e Heterorhabditidae) e do nemátode Bursaphelenchus xylophilus (Nematoda: Aphelenchoididade) em Portugal continental” Os nematodes entomopatogénicos são utilizados como agentes de controlo biológico. Para compreender a sua diversidade, foi realizada uma prospecção em Portugal. Cinco espécies, nomeadamente Steinernema feltiae, S. intermedium, S. kraussei, Steinernema sp. e Heterorhabditis bacteriophora foram identificadas. As sequências de ITS, região D2D3 do 28S rRNA, COXI e cytb foram utilizadas para estudar a diversidade genética das duas espécies mais abundantes, S. feltiae and H. bacteriophora, não tendo sido encontradas diferenças significativas entre isolados. O nemátode da madeira do pinheiro, Bursaphelenchus xylophilus, provoca doença nos pinheiros tendo sido detectada pela primeira vez na Europa e em Portugal em 1999. Para avaliar a diversidade genética dos isolados Portugueses e identificar o padrão de propagação da doença, foram utilizadas a sequência da região IGS do 5.8S rRNA, e os genes cytb e cellulase, combinados com os padrões ISSR. Os padrões de ISSR mostraram elevada diversidade genética entre os recentes isolados Portugueses, sugerindo a possibilidade de uma nova introdução. As árvores filogenéticas dos genes da celulase e cytb sugeriram uma origem Asiática para os isolados Portugueses; ABSTRACT: Entomopathogenic nematodes are used as biocontrol agents. To understand their diversity, a survey was undertaken in Portugal. Five species, namely Steinernema feltiae, S. intermedium, S. kraussei, Steinernema sp. and Heterorhabditis bacteriophora were identified. The ITS, 28S rRNA D2D3 region, COXI and cytb sequences, used to study the genetic diversity of the two most abundant species, S. feltiae and H. bacteriophora, showed no significant differences among the isolates. Bursaphelenchus xylophilus causes severe disease in pine trees and was detected for the first time in Europe and in Portugal in 1999. To evaluate the genetic diversity of Portuguese isolates and identify disease spread pathways, the sequence of 5.8S rRNA IGS region, cytb and cellulase genes, combined with ISSR fingerprints were used. ISSR fingerprints show a high genetic variability among recent Portuguese isolates, suggesting the possibility of a new introduction. Phylogenetic trees based on cellulase and cytb genes suggests an Asian origin for Portuguese isolates.
Resumo:
There is growing awareness of the importance of cooperative behaviours in microbial communities. Empirical support for this insight comes from experiments using mutant strains, termed 'cheats', which exploit the cooperative behaviour of wild-type strains. However, little detailed work has gone into characterising the competitive dynamics of cooperative and cheating strains. We test three specific predictions about the fitness consequences of cheating to different extents by examining the production of the iron-scavenging siderophore molecule, pyoverdin, in the bacterium Pseudomonas aeruginosa. We create a collection of mutants that differ in the amount of pyoverdin that they produce (from 1% to 96% of the production of paired wild types) and demonstrate that these production levels correlate with both gene activity and the ability to bind iron. Across these mutants, we found that (1) when grown in a mixed culture with a cooperative wild-type strain, the relative fitness of a mutant is negatively correlated with the amount of pyoverdin that it produces; (2) the absolute and relative fitness of the wild-type strain in the mixed culture is positively correlated with the amount of pyoverdin that the mutant produces; and (3) when grown in a monoculture, the absolute fitness of the mutant is positively correlated with the amount of pyoverdin that it produces. Overall, we demonstrate that cooperative pyoverdin production is exploitable and illustrate how variation in a social behaviour determines fitness differently, depending on the social environment.
Resumo:
The gypsy moth, Lymantria dispar, a major defoliator of broad leaf trees, was accidentally introduced into North America in 1869. Much interest has been generated regarding the potential of using natural pathogens for biological control of this insect. One of these pathogens, a highly specific fungus, Entomophaga maimaiga, was accredited with causing major epizootics in populations of gypsy moth across the north-eastern United States in 1989 and 1990 and is thought to be spreading northwards into Canada. This study examined gypsy moth population densities in the Niagara Region. The fungus, .E.. maimaiga, was artificially introduced into one site and the resulting mortality in host populations was noted over two years. The relationship between fungal mortality, host population density and occurrence of another pathogen, the nuclear polyhedrosis virus (NPV), was assessed. Gypsy moth population density was assessed by counting egg masses in 0.01 hectare (ha) study plots in six areas, namely Louth, Queenston, Niagara-on-the-Lake, Shorthills Provincial Park, Chippawa Creek and Willoughby Marsh. High variability in density was seen among sites. Willoughby Marsh and Chippawa Creek, the sites with the greatest variability, were selected for more intensive study. The pathogenicity of E. maimaiga was established in laboratory trials. Fungal-infected gypsy moth larvae were then released into experimental plots of varying host density in Willoughby Marsh in 1992. These larvae served as the inoculum to infect field larvae. Other larvae were injected with culture medium only and released into control plots also of varying host density. Later, field larvae were collected and assessed for the presence of .E.. maimaiga and NPV. A greater proportion of larvae were infected from experimental plots than from control plots indicating that the experimental augmentation had been successful. There was no relationship between host density and the proportion of infected larvae in either experimental or control plots. In 1992, 86% of larvae were positive for NPV. Presence and intensity of NPV infection was independent of fungal presence, plot type or interaction of these two factors. Sampling was carried out in the summer of 1993, the year after the introduction, to evaluate the persistence of the pathogen in the environment. Almost 50% of all larvae were infected with the fungus. There was no difference between control and experimental plots. Data collected from Willoughby Marsh indicated that there was no correlation between the proportion of larvae infected with the fungus and host population density in either experimental or control plots. About 10% of larvae collected from a nearby site, Chippawa Creek, were also positive for .E.. maimaiga suggesting that low levels of .E.. maimaiga probably occurred naturally in the area. In 1993, 9.6% of larvae were positive for NPV. Again, presence or absence of NPV infection was independent of fungal presence plot type or interaction of these two factors. In conclusion, gypsy moth population densities were highly variable between and within sites in the Niagara Region. The introduction of the pathogenic fungus, .E.. maimaiga, into Willoughby Marsh in 1992 was successful and the fungus was again evident in 1993. There was no evidence for existence of a relationship between fungal mortality and gypsy moth density or occurrence of NPV. The results from this study are discussed with respect to the use of .E.. maimaiga in gypsy moth management programs.
Resumo:
Metarhizium robertsii is an entomopathogenic fungus that is additionally plant rhizosphere competent. Two adhesin-encoding gens, Mad1 and Mad2, are involved in insect pathogenesis or plant root colonization, respectively. This study examined differential expression of the Mad genes for M robertsii grown on a variety of insectand plant-related substrates. Mad1 was up regulated in response to insect cuticles and up regulation of Mad2 resulted from root exudates, tomato stems and non-preferred carbohydrates. A time course analysis that compared water, minimal media, and nutrient rich broth revealed Mad2 gene expression increased as nutrient availability decreased. The regulation of Mad2 compared to known stress-related genes (Hsp30, Hsp70 and ssgA) under various stresses (nutrient, pH, osmotic, oxidative, temperature) revealed Mad2 to be generally up regulated by nutrient starvation only. Examination of the Mad2 promoter region revealed two copies of a stress-response element (S TRE) known to be regulated under the general stress response pathway.
Resumo:
L'azote est l'un des éléments les plus essentiels dans le monde pour les êtres vivants, car il est essentiel pour la production des éléments de base de la cellule, les acides aminés, les acides nucléiques et les autres constituants cellulaires. L’atmosphère est composé de 78% d'azote gazeux, une source d'azote inutilisable par la plupart des organismes à l'exception de ceux qui possèdent l’enzyme nitrogénase, tels que les bactéries diazotrophique. Ces micro-organismes sont capables de convertir l'azote atmosphérique en ammoniac (NH3), qui est l'une des sources d'azote les plus préférables. Cette réaction exigeant l’ATP, appelée fixation de l'azote, est catalysée par une enzyme, nitrogénase, qui est l'enzyme la plus importante dans le cycle de l'azote. Certaines protéines sont des régulateurs potentiels de la synthèse de la nitrogénase et de son activité; AmtB, DraT, DraG, les protéines PII, etc.. Dans cette thèse, j'ai effectué diverses expériences afin de mieux comprendre leurs rôles détailés dans Rhodobacter capsulatus. La protéine membranaire AmtB, très répandue chez les archaea, les bactéries et les eucaryotes, est un membre de la famille MEP / Amt / Rh. Les protéines AmtB sont des transporteurs d'ammonium, importateurs d'ammonium externe, et ont également été suggéré d’agir comme des senseurs d'ammonium. Il a été montré que l’AmtB de Rhodobacter capsulatus fonctionne comme un capteur pour détecter la présence d'ammonium externe pour réguler la nitrogénase. La nitrogénase est constituée de deux métalloprotéines nommées MoFe-protéine et Fe-protéine. L'addition d'ammoniaque à une culture R. capsulatus conduit à une série de réactions qui mènent à la désactivation de la nitrogénase, appelé "nitrogénase switch-off". Une réaction critique dans ce processus est l’ajout d’un groupe ADP-ribose à la Fe-protéine par DraT. L'entrée de l'ammoniac dans la cellule à travers le pore AmtB est contrôlée par la séquestration de GlnK. GlnK est une protéine PII et les protéines PII sont des protéines centrales dans la régulation du métabolisme de l'azote. Non seulement la séquestration de GlnK par AmtB est importante dans la régulation nitrogénase, mais la liaison de l'ammonium par AmtB ou de son transport partiel est également nécessaire. Les complexes AmtB-GlnK sont supposés de lier DraG, l’enzyme responsable pour enlever l'ADP-ribose ajouté à la nitrogénase par DraT, ainsi formant un complexe ternaire. Dans cette thèse certains détails du mécanisme de transduction du signal et de transport d'ammonium ont été examinés par la génération et la caractérisation d’un mutant dirigé, RCZC, (D335A). La capacité de ce mutant, ainsi que des mutants construits précédemment, RCIA1 (D338A), RCIA2 (G344C), RCIA3 (H193E) et RCIA4 (W237A), d’effectuer le « switch-off » de la nitrogénase a été mesurée par chromatographie en phase gazeuse. Les résultats ont révélé que tous les résidus d'acides aminés ci-dessus ont un rôle essentiel dans la régulation de la nitrogénase. L’immunobuvardage a également été effectués afin de vérifier la présence de la Fe-protéine l'ADP-ribosylée. D335, D388 et W237 semblent être cruciales pour l’ADP-ribosylation, puisque les mutants RCZC, RCIA1 et RCIA4 n'a pas montré de l’ADP-ribosylation de la Fe-protéine. En outre, même si une légère ADP-ribosylation a été observée pour RCIA2 (G344C), nous le considérons comme un résidu d'acide aminé important dans la régulation de la nitrogénase. D’un autre coté, le mutant RCIA3 (H193E) a montré une ADP-ribosylation de la Fe-protéine après un choc d'ammonium, par conséquent, il ne semble pas jouer un rôle important dans l’ADP-ribosylation. Par ailleurs R. capsulatus possède une deuxième Amt appelé AmtY, qui, contrairement à AmtB, ne semble pas avoir des rôles spécifiques. Afin de découvrir ses fonctionnalités, AmtY a été surexprimée dans une souche d’E. coli manquant l’AmtB (GT1001 pRSG1) (réalisée précédemment par d'autres membres du laboratoire) et la formation des complexes AmtY-GlnK en réponse à l'addition d’ammoniac a été examinée. Il a été montré que même si AmtY est en mesure de transporter l'ammoniac lorsqu'il est exprimé dans E. coli, elle ne peut pass’ associer à GlnK en réponse à NH4 +.
Resumo:
The microorganisms are recognized as important sources of protease inhibitors which are valuable in the fields of medicine, agriculture and biotechnology. The protease inhibitors of microbial origin are found to be versatile in their structure and mode of inhibition that vary from those of other sources. Although surplus of low molecular weight non-protein protease inhibitors from microorganisms have been reported, there is a dearth of reports on proteinaceous protease inhibitors. The search for new metabolites from marine organisms has resulted in the isolation of more or less 10,000 metabolites (Fuesetani and Fuesetani, 2000) many of which are gifted with pharmacodynamic properties. The existence of marine microorganisms was reported earlier, and they were found to be metabolically and physiologically dissimilar from terrestrial microorganisms. Marine microorganisms have potential as important new sources of enzyme inhibitors and consequently a detailed study of new marine microbial inhibitors will provide the basis for future research (Imada, 2004).
Resumo:
A Pseudomonas sp PS-102 recovered from Muttukkadu brackish water lagoon, situated south of Chennai, showed significant activity against a number of shrimp pathogenic vibrios. Out of the 112 isolates of bacterial pathogens comprising Vibrio harveyi, V. vulnificus, V. parahaemolyticus, V. alginolyticus, V. fluvialis, and Aeromonas spp, 73% were inhibited in vitro by the cell-free culture supernatant of Pseudomonas sp PS-102 isolate. The organism produced yellowish fluorescent pigment on King's B medium, hydrolysed starch and protein, and produced 36.4% siderophore units by CAS assay and 32 μM of catechol siderophores as estimated by Arnow's assay. The PS-102 isolate showed wide ranging environmental tolerance with, temperatures from 25 to 40 °C, pH from 6 to 8, salinity from 0 to 36 ppt, while the antagonistic activity peaked in cultures grown at 30 °C, pH 8.0 and at 5 ppt saline conditions. The antagonistic activity of the culture supernatant was evident even at 30% v / v dilution against V. harveyi. The preliminary studies on the nature of the antibacterial action indicated that the antagonistic principle as heat stable and resistant to proteolytic, lipolytic and amylolytic enzymes. Pseudomonas sp PS 102 was found to be safe to shrimp when PL-9 stage were challenged at 107 CFU ml−1 and by intramuscular injection into of ∼5 g sub-adults shrimp at 105 to 108 CFU. Further, its safety in a mammalian system, tested by its pathogenicity to mice, was also determined and its LD50 to BALB/c mice was found to be 109 CFU. The results of this study indicated that the organism Pseudomonas sp PS 102 could be employed as a potential probiont in shrimp and prawn aquaculture systems for management and control of bacterial infections
Resumo:
marine bacterium, Micrococcus MCCB 104, isolated from hatchery water, demonstrated extracellular antagonistic properties against Vibrio alginolyticus, V. parahaemolyticus, V. vulnificus, V. fluviallis, V. nereis, V. proteolyticus, V. mediterranei, V. cholerae and Aeromonas sp., bacteria associated with Macrobrachium rosenbergii larval rearing systems. The isolate inhibited the growth of V. alginolyticus during co-culture. The antagonistic component of the extracellular product was heat-stable and insensitive to proteases, lipase, catalase and α-amylase. Micrococcus MCCB 104 was demonstrated to be non-pathogenic to M. rosenbergii larvae
Resumo:
The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO2NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drugresistant bacterium. Bacterial sensitivity towards antibiotics and Ag-SiO2NC was studied using standard disc diffusion and death rate assay, respectively. The effect of Ag-SiO2NC on cell wall integrity was monitored using SDS assay and fatty acid profile analysis while the effect on metabolism and genetic stability was assayed microscopically, using CTC viability staining and comet assay, respectively. P. aeruginosa was found to be resistant to β-lactamase, glycopeptidase, sulfonamide, quinolones, nitrofurantoin and macrolides classes of antibiotics. Complete mortality of the bacterium was achieved with 80 μgml-1 concentration of Ag-SiO2NC. The cell wall integrity reduced with increasing time and reached a plateau of 70 % in 110 min. Changes were also noticed in the proportion of fatty acids after the treatment. Inside the cytoplasm, a complete inhibition of electron transport system was achieved with 100 μgml-1 Ag-SiO2NC, followed by DNA breakage. The study thus demonstrates that Ag-SiO2NC invades the cytoplasm of the multiple drug-resistant P. aeruginosa by impinging upon the cell wall integrity and kills the cells by interfering with electron transport chain and the genetic stability
Resumo:
Cells of the bacterial symbiont Xenorhabdus nematophila from the entomopathogenic nematode, Steinernema carpocapsae entered the pupae of Plutella xylostella after 15 minutes treatment with suspensions containing the bacterial cells. Secretions of Xenorhabdus nematophila, in either broth or water, were found lethal to the pupae of P. xylostella when applied in moist sand. The bacterial symbiont Xenorhabdus nematophila was found lethal to the pupae of greater wax moth (Galleria mellonella), beet armyworm (Spodoptera exigua), diamondback moth (Plutella xylostella) and black vine weevil (Otiorhynchus sulcatus) in the absence of the nematode vector and the cells of X. nematophila entered the haemocoele of the pupae.
Resumo:
Susceptibility of late instar vine weevil Otiorhynchus sulcatus larvae and pupae to four species entomopathogenic nematodes were tested. Bioassays on production and infectivity to larvae and pupae were compared for two steinernematids and two heterorhabditis such as Steinernema carpocapsae, S. feltiae, Heterorhabditis indica and H. bacteriophora. Nematodes production of all species was determined by the number infective juveniles (IJs) established in vine weevil larvae and pupae O. sulcatus using sand and filter paper bioassay. S. feltiae produced the maximum number in larvae and pupae at 20°C as compared to other nematodes but production of H. indica, was better at 25°C in larvae and pupae followed by H. bacteriophora, S. carpocapsae and Infectivity test of larvae and pupae was also done in sand media. Infective juveniles recovered from larvae and pupae when infected with S. feltiae produced maximum infective juveniles at 20°C temperatures than all other isolates. H. bacteriophora produced higher number of IJs in larvae and pupae than all other nematode isolates at 25°C. This paper indicates the application of nematodes with the knowledge of insect pest biology represents a possible new strategy for O. sulcatus larvae and pupae.