966 resultados para Engineering structure
Resumo:
Recent advances in tissue engineering and regenerative medicine have shown that controlling cells microenvironment during growth is a key element to the development of successful therapeutic system. To achieve such control, researchers have first proposed the use of polymeric scaffolds that were able to support cellular growth and, to a certain extent, favor cell organization and tissue structure. With nowadays availability of a large pool of stem cell lines, such approach has appeared to be rather limited since it does not offer the fine control of the cell micro-environment in space and time (4D). Therefore, researchers are currently focusing their efforts on developing strategies that include active compound delivery systems in order to add a fourth dimension to the design of 3D scaffolds. This review will focus on recent concepts and applications of 2D and 3D techniques that have been used to control the load and release of active compounds used to promote cell differentiation and proliferation in or out of a scaffold. We will first present recent advances in the design of 2D polymeric scaffolds and the different techniques that have been used to deposit molecular cues and cells in a controlled fashion. We will continue presenting the recent advances made in the design of 3D scaffolds based on hydrogels as well as polymeric fibers and we will finish by presenting some of the research avenues that are still to be explored.
Resumo:
Cast Ai-Si alloys are widely used in the automotive, aerospace and general engineering industries due to their excellent combination of properties such as good castability, low coefficient of thermal expansion, high strength-to-weight ratio and good corrosion resistance. The present investigation is on the influence of alloying additions on the structure and properties of Ai-7Si-0.3Mg alloy. The primary objective of this present investigation is to study these beneficial effects of calcium on the structure and properties of Ai-7Si-0.3Mg-xFe alloys. The second objective of this work is to study the effects of Mn,Be and Sr addition as Fe neutralizers and also to study the interaction of Mn,Be,Sr and Ca in Ai-7Si-0.3Mg-xFe alloys. In this study the duel beneficial effects of Ca viz;modification and Fe-neutralization, comparison of the effects of Ca and Sr with common Fe neutralizers. The casting have been characterized with respect to their microstructure, %porosity and electrical conductivity, solidification behaviour and mechanical properties. One of the interesting observations in the present work is that a low level of calcium reduces the porosity compared to the untreated alloy. However higher level of calcium addition lead to higher porosity in the casting. An empirical analysis carried out for comparing the results of the present work with those of the other researchers on the effect of increasing iron content on UTS and % elongation of Ai-Si-Mg and Ai-Si-Cu alloys has shown a linear and an inverse first order polynomial relationships respectively.
Resumo:
Information and communication technologies are the tools that underpin the emerging “Knowledge Society”. Exchange of information or knowledge between people and through networks of people has always taken place. But the ICT has radically changed the magnitude of this exchange, and thus factors such as timeliness of information and information dissemination patterns have become more important than ever.Since information and knowledge are so vital for the all round human development, libraries and institutions that manage these resources are indeed invaluable. So, the Library and Information Centres have a key role in the acquisition, processing, preservation and dissemination of information and knowledge. ln the modern context, library is providing service based on different types of documents such as manuscripts, printed, digital, etc. At the same time, acquisition, access, process, service etc. of these resources have become complicated now than ever before. The lCT made instrumental to extend libraries beyond the physical walls of a building and providing assistance in navigating and analyzing tremendous amounts of knowledge with a variety of digital tools. Thus, modern libraries are increasingly being re-defined as places to get unrestricted access to information in many formats and from many sources.The research was conducted in the university libraries in Kerala State, India. lt was identified that even though the information resources are flooding world over and several technologies have emerged to manage the situation for providing effective services to its clientele, most of the university libraries in Kerala were unable to exploit these technologies at maximum level. Though the libraries have automated many of their functions, wide gap prevails between the possible services and provided services. There are many good examples world over in the application of lCTs in libraries for the maximization of services and many such libraries have adopted the principles of reengineering and re-defining as a management strategy. Hence this study was targeted to look into how effectively adopted the modern lCTs in our libraries for maximizing the efficiency of operations and services and whether the principles of re-engineering and- redefining can be applied towards this.Data‘ was collected from library users, viz; student as well as faculty users; library ,professionals and university librarians, using structured questionnaires. This has been .supplemented by-observation of working of the libraries, discussions and interviews with the different types of users and staff, review of literature, etc. Personal observation of the organization set up, management practices, functions, facilities, resources, utilization of information resources and facilities by the users, etc. of the university libraries in Kerala have been made. Statistical techniques like percentage, mean, weighted mean, standard deviation, correlation, trend analysis, etc. have been used to analyse data.All the libraries could exploit only a very few possibilities of modern lCTs and hence they could not achieve effective Universal Bibliographic Control and desired efficiency and effectiveness in services. Because of this, the users as well as professionals are dissatisfied. Functional effectiveness in acquisition, access and process of information resources in various formats, development and maintenance of OPAC and WebOPAC, digital document delivery to remote users, Web based clearing of library counter services and resources, development of full-text databases, digital libraries and institutional repositories, consortia based operations for e-journals and databases, user education and information literacy, professional development with stress on lCTs, network administration and website maintenance, marketing of information, etc. are major areas need special attention to improve the situation. Finance, knowledge level on ICTs among library staff, professional dynamism and leadership, vision and support of the administrators and policy makers, prevailing educational set up and social environment in the state, etc. are some of the major hurdles in reaping the maximum possibilities of lCTs by the university libraries in Kerala. The principles of Business Process Re-engineering are found suitable to effectively apply to re-structure and redefine the operations and service system of the libraries. Most of the conventional departments or divisions prevailing in the university libraries were functioning as watertight compartments and their existing management system was more rigid to adopt the principles of change management. Hence, a thorough re-structuring of the divisions was indicated. Consortia based activities and pooling and sharing of information resources was advocated to meet the varied needs of the users in the main campuses and off campuses of the universities, affiliated colleges and remote stations. A uniform staff policy similar to that prevailing in CSIR, DRDO, ISRO, etc. has been proposed by the study not only in the university libraries in kerala but for the entire country.Restructuring of Lis education,integrated and Planned development of school,college,research and public library systems,etc.were also justified for reaping maximum benefits of the modern ICTs.
Resumo:
Enterprise Modeling (EM) is currently in operation either as a technique to represent and understand the structure and behavior of the enterprise, or as a technique to analyze business processes, and in many cases as support technique for business process reengineering. However, EM architectures and methods for Enterprise Engineering can also used to support new management techniques like SIX SIGMA, because these new techniques need a clear, transparent and integrated definition and description of the business activities of the enterprise to be able to build up, optimize and operate an successful enterprise. The main goal of SIX SIGMA is to optimize the performance of processes. A still open question is: "What are the adequate Quality criteria and methods to ensure such performance? What must we do to get Quality governance?" This paper describes a method including an Enterprise Engineering method and SIX SIGMA strategy to reach Quality Governance
Resumo:
Enterprise Modeling (EM) is currently in operation either as a technique to represent and understand the structure and behavior of the enterprise, or as a technique to analyze business processes, and in many cases as support technique for business process reengineering. However, EM architectures and methodes for Enterprise Engineering can also used to support new management techniques like SIX SIGMA, because these new techniques need a clear, transparent and integrated definition and description of the business activities of the enterprise to be able to build up, to optimize and to operate an successful enterprise.
Resumo:
Conventional floating gate non-volatile memories (NVMs) present critical issues for device scalability beyond the sub-90 nm node, such as gate length and tunnel oxide thickness reduction. Nanocrystalline germanium (nc-Ge) quantum dot flash memories are fully CMOS compatible technology based on discrete isolated charge storage nodules which have the potential of pushing further the scalability of conventional NVMs. Quantum dot memories offer lower operating voltages as compared to conventional floating-gate (FG) Flash memories due to thinner tunnel dielectrics which allow higher tunneling probabilities. The isolated charge nodules suppress charge loss through lateral paths, thereby achieving a superior charge retention time. Despite the considerable amount of efforts devoted to the study of nanocrystal Flash memories, the charge storage mechanism remains obscure. Interfacial defects of the nanocrystals seem to play a role in charge storage in recent studies, although storage in the nanocrystal conduction band by quantum confinement has been reported earlier. In this work, a single transistor memory structure with threshold voltage shift, Vth, exceeding ~1.5 V corresponding to interface charge trapping in nc-Ge, operating at 0.96 MV/cm, is presented. The trapping effect is eliminated when nc-Ge is synthesized in forming gas thus excluding the possibility of quantum confinement and Coulomb blockade effects. Through discharging kinetics, the model of deep level trap charge storage is confirmed. The trap energy level is dependent on the matrix which confines the nc-Ge.
Resumo:
There has been limited development in catalyst carriers for magnetic separations where superparamagnetic nanoparticles of a high saturation magnetization with no coercivity are required to isolate expensive catalyst reagent that are subjected to repeated magnetic cycles. By using simple stepwise layer-by-layer nanochemistry techniques, we show that an fee FePt nanomagnet can be created inside each silica particle with tailored dimensions to great precision. Subsequent engineering of the external surface with Ti-O-Si species in an optimum structure to create a unique interface gives high activity and excellent selectivity of the composite material for the trans-stilbene oxidation to the corresponding epoxide in the presence of tert-butyl hydroperoxide. Thus, a new magnetic separable epoxidation catalyst is described. This work clearly demonstrates the significance of nanoengineering of a single catalyst particle by a bottom-up construction approach in modern catalyst design, which could lead to new catalytic. properties.
Resumo:
The aim of this study was to construct an artificial fetal membrane (FM) by combination of human amniotic epithelial stem cells (hAESCs) and a mechanically enhanced collagen scaffold containing encapsulated human amniotic stromal fibroblasts (hASFs). Such a tissue-engineered FM may have the potential to plug structural defects in the amniotic sac after antenatal interventions, or to prevent preterm premature rupture of the FM. The hAESCs and hASFs were isolated from human fetal amniotic membrane (AM). Magnetic cell sorting was used to enrich the hAESCs by positive ATP-binding cassette G2 selection. We investigated the use of a laminin/fibronectin (1:1)-coated compressed collagen gel as a novel scaffold to support the growth of hAESCs. A type I collagen gel was dehydrated to form a material mimicking the mechanical properties and ultra-structure of human AM. hAESCs successfully adhered to and formed a monolayer upon the biomimetic collagen scaffold. The resulting artificial membrane shared a high degree of similarity in cell morphology, protein expression profiles, and structure to normal fetal AM. This study provides the first line of evidence that a compacted collagen gel containing hASFs could adequately support hAESCs adhesion and differentiation to a degree that is comparable to the normal human fetal AM in terms of structure and maintenance of cell phenotype.
Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen
Resumo:
Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals.
Resumo:
Purpose – This study aims to examine the moderating effects of external environment and organisational structure in the relationship between business-level strategy and organisational performance. Design/methodology/approach – The focus of the study is on manufacturing firms in the UK belonging to the electrical and mechanical engineering sectors, and respondents were CEOs. Both objective and subjective measures were used to assess performance. Non-response bias was assessed statistically and appropriate measures taken to minimise the impact of common method variance (CMV). Findings – The results indicate that environmental dynamism and hostility act as moderators in the relationship between business-level strategy and relative competitive performance. In low-hostility environments a cost-leadership strategy and in high-hostility environments a differentiation strategy lead to better performance compared with competitors. In highly dynamic environments a cost-leadership strategy and in low dynamism environments a differentiation strategy are more helpful in improving financial performance. Organisational structure moderates the relationship of both the strategic types with ROS. However, in the case of ROA, the moderating effect of structure was found only in its relationship with cost-leadership strategy. A mechanistic structure is helpful in improving the financial performance of organisations adopting either a cost-leadership or a differentiation strategy. Originality/value – Unlike many other empirical studies, the study makes an important contribution to the literature by examining the moderating effects of both environment and structure on the relationship between business-level strategy and performance in a detailed manner, using moderated regression analysis.
Resumo:
Project management (PM) is a globally recognized discipline and has been widely adopted within the construction industry. Despite advancements in the PM discipline, the ineffective traditional management system, typical of the non-executive PM structure, is still widely used in the Nigerian construction industry. The aim of this paper is thus to explore the challenges facing the adoption of the executive PM structure in Nigeria. The paper first assesses the level of growth of PM in Nigeria using UK best practices as a benchmark and identifies the key PM characteristics in the two countries. Focus group interviews were used to collect the primary data for the study and content analysis was used to present the results in a thematic format. The study revealed the key barriers to the adoption of an executive PM structure in Nigeria as a lack of proper awareness, unfavorable policies, skill shortages, the traditional culture of stakeholders and the absence of a regulatory body. It is recommended that the government, as a major player/client in the Nigerian construction industry, should lead the campaign to change the traditional industry approach to project management. This is necessary if construction stakeholders in Nigeria are to be educated and encouraged towards adopting and putting into practice effective PM.
Resumo:
Dispersion in the near-field region of localised releases in urban areas is difficult to predict because of the strong influence of individual buildings. Effects include upstream dispersion, trapping of material into building wakes and enhanced concentration fluctuations. As a result, concentration patterns are highly variable in time and mean profiles in the near field are strongly non-Gaussian. These aspects of near-field dispersion are documented by analysing data from direct numerical simulations in arrays of building-like obstacles and are related to the underlying flow structure. The mean flow structure around the buildings is found to exert a strong influence over the dispersion of material in the near field. Diverging streamlines around buildings enhance lateral dispersion. Entrainment of material into building wakes in the very near field gives rise to secondary sources, which then affect the subsequent dispersion pattern. High levels of concentration fluctuations are also found in this very near field; the fluctuation intensity is of order 2 to 5.
Resumo:
Modification of graphene to open a robust gap in its electronic spectrum is essential for its use in field effect transistors and photochemistry applications. Inspired by recent experimental success in the preparation of homogeneous alloys of graphene and boron nitride (BN), we consider here engineering the electronic structure and bandgap of C2xB1−xN1−x alloys via both compositional and configurational modification. We start from the BN end-member, which already has a large bandgap, and then show that (a) the bandgap can in principle be reduced to about 2 eV with moderate substitution of C (x < 0.25); and (b) the electronic structure of C2xB1−xN1−x can be further tuned not only with composition x, but also with the configuration adopted by C substituents in the BN matrix. Our analysis, based on accurate screened hybrid functional calculations, provides a clear understanding of the correlation found between the bandgap and the level of aggregation of C atoms: the bandgap decreases most when the C atoms are maximally isolated, and increases with aggregation of C atoms due to the formation of bonding and anti-bonding bands associated with hybridization of occupied and empty defect states. We determine the location of valence and conduction band edges relative to vacuum and discuss the implications on the potential use of 2D C2xB1−xN1−x alloys in photocatalytic applications. Finally, we assess the thermodynamic limitations on the formation of these alloys using a cluster expansion model derived from first-principles.
Resumo:
In this work the synthesis of cubic, FDU-1 type, ordered mesoporous silica (OMS) was developed from two types of silicon source, tetraethyl orthosilicate (TEOS) and a less expensive compound, sodium silicate (Na(2)Si(3)O(7)), in the presence of a new triblock copolymer template Vorasurf 504 (EO(38)BO(46)EO(38)). For both silicon precursors the synthesis temperature was evaluated. For TEOS the effect of polymer dissolution in methanol and the acid solution (HCl and HBr) on the material structure was analyzed. For Na(2)Si(3)O(7) the influence of the polymer mass and the hydrothermal treatment time were the explored experimental parameters. The samples were examined by Small Angle X-ray Scattering (SAXS) and Nitrogen Sorption. For both precursors the decrease on the synthesis temperature from ambient, -25 degrees C, to -15 degrees C improved the ordered porous structure. For TEOS, the SAXS results showed that there is an optimum amount of hydrophobic methanol that contributed to dissolve the polymer but did not provoke structural disorder. The less electronegative Br-ions, when compared to Cl-, induced a more ordered porous structure, higher surface areas and larger lattice parameters. For Na(2)Si(3)O(7) the increase on the hydrothermal treatment time as well as the use of an optimized amount of polymer promoted a better ordered porous structure. (C) 2011 Elsevier B.V. All rights reserved.