886 resultados para Energy saving form
Resumo:
The built environment is a major contributor to the world’s carbon dioxide emissions, with a considerable amount of energy being consumed in buildings due to heating, ventilation and air-conditioning, space illumination, use of electrical appliances, etc., to facilitate various anthropogenic activities. The development of sustainable buildings seeks to ameliorate this situation mainly by reducing energy consumption. Sustainable building design, however, is a complicated process involving a large number of design variables, each with a range of feasible values. There are also multiple, often conflicting, objectives involved such as the life cycle costs and occupant satisfaction. One approach to dealing with this is through the use of optimization models. In this paper, a new multi-objective optimization model is developed for sustainable building design by considering the design objectives of cost and energy consumption minimization and occupant comfort level maximization. In a case study demonstration, it is shown that the model can derive a set of suitable design solutions in terms of life cycle cost, energy consumption and indoor environmental quality so as to help the client and design team gain a better understanding of the design space and trade-off patterns between different design objectives. The model can very useful in the conceptual design stages to determine appropriate operational settings to achieve the optimal building performance in terms of minimizing energy consumption and maximizing occupant comfort level.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.
Resumo:
The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop models for large scale analysis of the stock. This research proposes a probabilistic, engineering-based, bottom-up model to address these issues. In a recent study we classified London's non-domestic buildings based on the service they provide, such as offices, retail premise, and schools, and proposed the creation of one probabilistic representational model per building type. This paper investigates techniques for the development of such models. The representational model is a statistical surrogate of a dynamic energy simulation (ES) model. We first identify the main parameters affecting energy consumption in a particular building sector/type by using sampling-based global sensitivity analysis methods, and then generate statistical surrogate models of the dynamic ES model within the dominant model parameters. Given a sample of actual energy consumption for that sector, we use the surrogate model to infer the distribution of model parameters by inverse analysis. The inferred distributions of input parameters are able to quantify the relative benefits of alternative energy saving measures on an entire building sector with requisite quantification of uncertainties. Secondary school buildings are used for illustrating the application of this probabilistic method. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The diversity of non-domestic buildings at urban scale poses a number of difficulties to develop building stock models. This research proposes an engineering-based bottom-up stock model in a probabilistic manner to address these issues. School buildings are used for illustrating the application of this probabilistic method. Two sampling-based global sensitivity methods are used to identify key factors affecting building energy performance. The sensitivity analysis methods can also create statistical regression models for inverse analysis, which are used to estimate input information for building stock energy models. The effects of different energy saving measures are analysed by changing these building stock input distributions.
Resumo:
In the Wireless Local Area Networks (WLANs), the terminals are often powered by battery, so the power-saving performance of the wireless network card is a very important issue. For IEEE 802.11 Ad hoc networks, a power-saving scheme is presented in Medium Access Control (MAC) layer to reduce the power consumption by allowing the nodes enter into the sleep mode, but the scheme is based on Time-Drive Scheme (TDS) whose power-saving efficiency becomes lower and lower with the network load increasing. This paper presented a novel energy-saving mechanism, called as Hybrid-Drive Scheme (HDS), which introduces into a Message.-Drive Scheme (MDS) and combines MDS with the conventional TDS. The MDS, could obtain high efficiency when the load is heavy; meanwhile the TDS has high efficiency when the network load is small. The analysis shows that the proposed HDS could obtain high energy-efficiency whether the network load is light or heavy and have higher energy-saving efficiency than conventional scheme in the IEEE 802.11 standard.
Resumo:
Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within 20%.
Resumo:
Wireless enabled portable devices must operate with the highest possible energy efficiency while still maintaining a minimum level and quality of service to meet the user's expectations. The authors analyse the performance of a new pointer-based medium access control protocol that was designed to significantly improve the energy efficiency of user terminals in wireless local area networks. The new protocol, pointer controlled slot allocation and resynchronisation protocol (PCSAR), is based on the existing IEEE 802.11 point coordination function (PCF) standard. PCSAR reduces energy consumption by removing the need for power saving stations to remain awake and listen to the channel. Using OPNET, simulations were performed under symmetric channel loading conditions to compare the performance of PCSAR with the infrastructure power saving mode of IEEE 802.11, PCF-PS. The simulation results demonstrate a significant improvement in energy efficiency without significant reduction in performance when using PCSAR. For a wireless network consisting of an access point and 8 stations in power saving mode, the energy saving was up to 31% while using PCSAR instead of PCF-PS, depending upon frame error rate and load. The results also show that PCSAR offers significantly reduced uplink access delay over PCF-PS while modestly improving uplink throughput.
Resumo:
The performance of a new pointer-based medium-access control protocol that was designed to significantly improve the energy efficiency of user terminals in quality-of-service-enabled wireless local area networks was analysed. The new protocol, pointer-controlled slot allocation and resynchronisation protocol (PCSARe), is based on the hybrid coordination function-controlled channel access mode of the IEEE 802.11e standard. PCSARe reduces energy consumption by removing the need for power-saving stations to remain awake for channel listening. Discrete event network simulations were performed to compare the performance of PCSARe with the non-automatic power save delivery (APSD) and scheduled-APSD power-saving modes of IEEE 802.11e. The simulation results show a demonstrable improvement in energy efficiency without significant reduction in performance when using PCSARe. For a wireless network consisting of an access point and eight stations in power-saving mode, the energy saving was up to 39% when using PCSARe instead of IEEE 802.11e non-APSD. The results also show that PCSARe offers significantly reduced uplink access delay over IEEE 802.11e non-APSD, while modestly improving the uplink throughput. Furthermore, although both had the same energy consumption, PCSARe gave a 25% reduction in downlink access delay compared with IEEE 802.11e S-APSD.
Resumo:
K-alpha x-ray emission, extreme ultraviolet emission, and plasma imaging techniques have been used to diagnose energy transport patterns in copper foils ranging in thickness from 5 to 75 mu m for intensities up to 5x10(20) Wcm(-20). The K-alpha emission and shadowgrams both indicate a larger divergence angle than that reported in the literature at lower intensities [R. Stephens , Phys. Rev. E 69, 066414 (2004)]. Foils 5 mu m thick show triple-humped plasma expansion patterns at the back and front surfaces. Hybrid code modeling shows that this can be attributed to an increase in the mean energy of the fast electrons emitted at large radii, which only have sufficient energy to form a plasma in such thin targets.
Energy-Aware Rate and Description Allocation Optimized Video Streaming for Mobile D2D Communications
Resumo:
The proliferation problem of video streaming applications and mobile devices has prompted wireless network operators to put more efforts into improving quality of experience (QoE) while saving resources that are needed for high transmission rate and large size of video streaming. To deal with this problem, we propose an energy-aware rate and description allocation optimization method for video streaming in cellular network assisted device-to-device (D2D) communications. In particular, we allocate the optimal bit rate to each layer of video segments and packetize the segments into multiple descriptions with embedded forward error correction (FEC) for realtime streaming without retransmission. Simultaneously, the optimal number of descriptions is allocated to each D2D helper for transmission. The two allocation processes are done according to the access rate of segments, channel state information (CSI) of D2D requester, and remaining energy of helpers, to gain the highest optimization performance. Simulation results demonstrate that our proposed method (named OPT) significantly enhances the performance of video streaming in terms of high QoE and energy saving.
Resumo:
Power, and consequently energy, has recently attained first-class system resource status, on par with conventional metrics such as CPU time. To reduce energy consumption, many hardware- and OS-level solutions have been investigated. However, application-level information - which can provide the system with valuable insights unattainable otherwise - was only considered in a handful of cases. We introduce OpenMPE, an extension to OpenMP designed for power management. OpenMP is the de-facto standard for programming parallel shared memory systems, but does not yet provide any support for power control. Our extension exposes (i) per-region multi-objective optimization hints and (ii) application-level adaptation parameters, in order to create energy-saving opportunities for the whole system stack. We have implemented OpenMPE support in a compiler and runtime system, and empirically evaluated its performance on two architectures, mobile and desktop. Our results demonstrate the effectiveness of OpenMPE with geometric mean energy savings across 9 use cases of 15 % while maintaining full quality of service.
Resumo:
The promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.
Resumo:
The global warming due to high CO2 emission in the last years has made energy saving a global problem nowadays. However, manufacturing processes such as pultrusion necessarily needs heat for curing the resin. Then, the only option available is to apply all efforts to make the process even more efficient. Different heating systems have been used on pultrusion, however, the most widely used are the planar resistances. The main objective of this study is to develop another heating system and compares it with the former one. Thermography was used in spite of define the temperature profile along the die. FEA (finite element analysis) allows to understand how many energy is spend with the initial heating system. After this first approach, changes were done on the die in order to test the new heating system and to check possible quality problems on the product. Thus, this work allows to conclude that with the new heating system a significant reduction in the setup time is now possible and an energy reduction of about 57% was achieved.
Resumo:
The purpose of this study is to improve the potential energy recovery to electric energy in an electrohydraulic forklift system. The initial achieved result for energy saving ratio after structural optimization is 40 %. Component optimization is applied to the tested drive which consists of a DTC controlled electric servo motor directly running a reversible hydraulic pump. According to the study the energy efficiency and the energy recovery from the electro-hydraulic forklift system can be increased by 11 % units. New ideas and directions of further research were obtained during the study.