997 resultados para Energy derivatives


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantum chemical calculations at the B3LYP/6-31G* level of theory were employed for the structure-activity relationship and prediction of the antioxidant activity of edaravone and structurally related derivatives using energy (E), ionization potential (IP), bond dissociation energy (BDE), and stabilization energies(Delta E-iso). Spin density calculations were also performed for the proposed antioxidant activity mechanism. The electron abstraction is related to electron-donating groups (EDG) at position 3, decreasing the IP when compared to substitution at position 4. The hydrogen abstraction is related to electron-withdrawing groups (EDG) at position 4, decreasing the BDECH when compared to other substitutions, resulting in a better antioxidant activity. The unpaired electron formed by the hydrogen abstraction from the C-H group of the pyrazole ring is localized at 2, 4, and 6 positions. The highest scavenging activity prediction is related to the lowest contribution at the carbon atom. The likely mechanism is related to hydrogen transfer. It was found that antioxidant activity depends on the presence of EDG at the C-2 and C-4 positions and there is a correlation between IP and BDE. Our results identified three different classes of new derivatives more potent than edaravone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Former bioactivity-guided analysis of the marine invertebrate Eudistoma vannamei led to the isolation of staurosporine derivatives, which revealed strong cytotoxic activity against several human cancer cell lines. The occurrence of such alkaloids in E. vannamei may be correlated to the presence of associated biota, such as Streptomyces bacteria. In agreement to this hypothesis, marine microorganisms associated with E. vannamei were recovered and cultured, leading to a total of 84 isolated bacterial strains. Gas phase fragmentation reactions of staurosporine and derivatives were systematically studied and the analyzed results further supported by computational chemistry studies. The resulting fragment patterns were used to search for the presence of different derivatives in extracts of isolated microorganisms, thereby using LC-MS/MS analysis in MRM mode. These results evidenced that one isolated Streptomyces sp. was able to generate staurosporine, while none of the hydroxy-7-oxo derivatives were detected. Finally, significant cytotoxic activity against human cancer lines was observed for one of the extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Homo-oligofluorenes (OFn), polyfluorenes (PF2/6) and oligofluorenes with one fluorenenone group in the center (OFnK) were synthesized. They were used as model compounds to understand of the structure-property relationships of polyfluorenes and the origin of the green emission in the photoluminescence (after photooxidation of the PFs) and the electroluminescence (EL) spectra. The electronic, electrochemical properties, thermal behavior, supramolecular self-assembly, and photophysical properties of OFn, PF2/6 and OFnK were investigated. Oligofluorenes with 2-ethylhexyl side chain (OF2-OF7) from the dimer up to the heptamer were prepared by a series of stepwise transition metal mediated Suzuki and Yamamoto coupling reactions. Polyfluorene was synthesized by Yamamoto coupling of 2,7-dibromo-9,9-bis(2-ethylhexyl)fluorene. Oligofluorenes with one fluorenone group in the center (OF3K, OF5K, OF7K) were prepared by Suzuki coupling between the monoboronic fluorenyl monomer, dimer, trimer and 2, 7-dibromofluorenone. The electrochemical and electronic properties of homo-oligofluorenes (OFn) were systematically studied by several combined techniques such as cyclic voltammetry, differential pulse voltammetry, UV-vis absorption spectroscopy, steady and time-resolved fluorescence spectroscopy. It was found that the oligofluorenes behave like classical conjugated oligomers, i.e., with the increase of the chain-length, the corresponding oxidation potential, the absorption and emission maximum, ionization potential, electron affinity, band gap and the photoluminescence lifetime displayed a very good linear relation with the reciprocal number of the fluorene units (1/n). The extrapolation of these linear relations to infinite chain length predicted the electrochemical and electronic properties of the corresponding polyfluorenes. The thermal behavior, single-crystal structure and supramolecular packing, alignment properties, and molecular dynamics of the homo-oligofluorenes (OFn) up to the polymer were studied using techniques such as TGA, DSC, WAXS, POM and DS. The OFn from tetramer to heptamer show a smectic liquid crystalline phase with clearly defined isotropization temperature. The oligomers do show a glass transition which exhibits n-1 dependence and allows extrapolation to a hypothetical glass transition of the polymer at around 64 °C. A smectic packing and helix-like conformation for the oligofluorenes from tetramer to heptamer was supported by WAXS experiments, simulation, and single-crystal structure of some oligofluorene derivatives. Oligofluorenes were aligned more easily than the corresponding polymer, and the alignability increased with the molecular length from tetramer to heptamer. The molecular dynamics in a series of oligofluorenes up to the polymer was studied using dielectric spectroscopy. The photophysical properties of OFn and PF2/6 were investigated by the steady-state spectra (UV-vis absorption and fluorescence spectra) and time-resolved fluorescence spectra both in solution and thin film. The time-resolved fluorescence spectra of the oligofluorenes were measured by streak camera and gate detection technique. The lifetime of the oligofluorenes decreased with the extension of the chain-length. No green emission was observed in CW, prompt and delayed fluorescence for oligofluorenes in m-THF and film at RT and 77K. Phosphorescence was observed for oligofluorenes in frozen dilute m-THF solution at 77K and its lifetime increased with length of oligofluorenes. A linear relation was obtained for triplet energy and singlet energy as a function of the reciprocal degree of polymerization, and the singlet-triplet energy gap (S1-T1) was found to decrease with the increase of degree of polymerization. Oligofluorenes with one fluorenone unit at the center were used as model compounds to understand the origin of the low-energy (“green”) emission band in the photoluminescence and electroluminescence spectra of polyfluorenes. Their electrochemical properties were investigated by CV, and the ionization potential (Ip) and electron affinity (Ea) were calculated from the onset of oxidation and reduction of OFnK. The photophysical properties of OFnK were studied in dilute solution and thin film by steady-state spectra and time-resolved fluorescence spectra. A strong green emission accompanied with a weak blue emission were obtained in solution and only green emission was observed on film. The strong green emission of OFnK suggested that rapid energy transfer takes place from higher energy sites (fluorene segments) to lower energy sites (fluorenone unit) prior to the radiative decay of the excited species. The fluorescence spectra of OFnK also showed solvatochromism. Monoexponential decay behaviour was observed by time-resolved fluorescence measurements. In addition, the site-selective excitation and concentration dependence of the fluorescence spectra were investigated. The ratio of green and blue emission band intensities increases with the increase of the concentration. The observed strong concentration dependence of the green emission band in solution suggests that increased interchain interactions among the fluorenone-containing oligofluorene chain enhanced the emission from the fluorenone defects at higher concentration. On the other hand, the mono-exponential decay behaviour and power dependence were not influenced significantly by the concentration. We have ruled out the possibility that the green emission band originates from aggregates or excimer formation. Energy transfer was further investigated using a model system of a polyfluorene doped by OFnK. Förster-type energy transfer took place from PF2/6 to OFnK, and the energy transfer efficiency increased with increasing of the concentration of OFnK. Efficient funneling of excitation energy from the high-energy fluorene segments to the low-energy fluorenone defects results from energy migration by hopping of excitations along a single polymer chain until they are trapped on the fluorenone defects on that chain or transferred onto neighbouring chains by Förster-type interchain energy transfer process. These results imply that the red-shifted emission in polyfluorenes can originate from (usually undesirable) keto groups at the bridging carbon atoms-especially if the samples have been subject to photo- or electro-oxidation or if fluorenone units are present due to an improper purification of the monomers prior to polymerization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently pi-conjugated polymers are considered as technologically interesting materials to be used as functional building elements for the development of the new generation of optoelectronic devices. More specifically during the last few years, poly-p-phenylene materials have attracted considerable attention for their blue photoluminescence properties. This Thesis deals with the optical properties of the most representative blue light poly-p-phenylene emitters such as poly(fluorene), oligo(fluorene), poly(indenofluorene) and ladder-type penta(phenylene) derivatives. In the present work, laser induced photoluminescence spectroscopy is used as a major tool for the study of the interdependence between the dynamics of the probed photoluminescence, the molecular structures of the prepared polymeric films and the presence of chemical defects. Complementary results obtained by two-dimensional wide-angle X-ray diffraction are reported. These findings show that the different optical properties observed are influenced by the intermolecular solid-state interactions that in turn are controlled by the pendant groups of the polymer backbone. A significant feedback is delivered regarding the positive impact of a new synthetic route for the preparation of a poly(indenofluorene) derivative on the spectral purity of the compound. The energy transfer mechanisms that operate in the studied systems are addressed by doping experiments. After the evaluation of the structure/property interdependence, a new optical excitation pathway is presented. An efficient photon low-energy up-conversion that sensitises the blue emission of poly(fluorene) is demonstrated. The observed phenomenon takes place in poly(fluorene) derivatives hosts doped with metallated octaethyl porphyrins, after quasi-CW photoexcitation of intensities in the order of kW/cm2. The up-conversion process is parameterised in terms of temperature, wavelength excitation and central metal cation in the porphyrin ring. Additionally the observation of the up-conversion is extended in a broad range of poly-p-phenylene blue light emitting hosts. The dependence of the detected up-conversion intensity on the excitation intensity and doping concentration is reported. Furthermore the dynamics of the up-conversion intensity are monitored as a function of the doping concentration. These experimental results strongly suggest the existence of triplet-triplet annihilation events into the porphyrin molecules that are subsequently followed by energy transfer to the host. After confirming the occurrence of the up-conversion in solutions, cyclic voltammetry is used in order to show that the up-conversion efficiency is partially determined from the energetic alignment between the HOMO levels of the host and the dopant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Arbeit befasst sich mit der Synthese und Charakterisierung von Polymeren mit redox-funktionalen Phenothiazin-Seitenketten. Phenothiazin und seine Derivate sind kleine Redoxeinheiten, deren reversibles Redoxverhalten mit electrochromen Eigenschaften verbunden ist. Das besondere an Phenothiazine ist die Bildung von stabilen Radikalkationen im oxidierten Zustand. Daher können Phenothiazine als bistabile Moleküle agieren und zwischen zwei stabilen Redoxzuständen wechseln. Dieser Schaltprozess geht gleichzeitig mit einer Farbveränderung an her.rnrnIm Rahmen dieser Arbeit wird die Synthese neuartiger Phenothiazin-Polymere mittels radikalischer Polymerisation beschrieben. Phenothiazin-Derivate wurden kovalent an aliphatischen und aromatischen Polymerketten gebunden. Dies erfolgte über zwei unterschiedlichen synthetischen Routen. Die erste Route beinhaltet den Einsatz von Vinyl-Monomeren mit Phenothiazin Funktionalität zur direkten Polymerisation. Die zweite Route verwendet Amin modifizierte Phenothiazin-Derivate zur Funktionalisierung von Polymeren mit Aktivester-Seitenketten in einer polymeranalogen Reaktion. rnrnPolymere mit redox-funktionalen Phenothiazin-Seitenketten sind aufgrund ihrer Elektron-Donor-Eigenschaften geeignete Kandidaten für die Verwendung als Kathodenmaterialien. Zur Überprüfung ihrer Eignung wurden Phenothiazin-Polymere als Elektrodenmaterialien in Lithium-Batteriezellen eingesetzt. Die verwendeten Polymere wiesen gute Kapazitätswerte von circa 50-90 Ah/kg sowie schnelle Aufladezeiten in der Batteriezelle auf. Besonders die Aufladezeiten sind 5-10 mal höher als konventionelle Lithium-Batterien. Im Hinblick auf Anzahl der Lade- und Entladezyklen, erzielten die Polymere gute Werte in den Langzeit-Stabilitätstests. Insgesamt überstehen die Polymere 500 Ladezyklen mit geringen Veränderungen der Anfangswerte bezüglich Ladezeiten und -kapazitäten. Die Langzeit-Stabilität hängt unmittelbar mit der Radikalstabilität zusammen. Eine Stabilisierung der Radikalkationen gelang durch die Verlängerung der Seitenkette am Stickstoffatom des Phenothiazins und der Polymerhauptkette. Eine derartige Alkyl-Substitution erhöht die Radikalstabilität durch verstärkte Wechselwirkung mit dem aromatischen Ring und verbessert somit die Batterieleistung hinsichtlich der Stabilität gegenüber Lade- und Entladezyklen. rnrnDes Weiteren wurde die praktische Anwendung von bistabilen Phenothiazin-Polymeren als Speichermedium für hohe Datendichten untersucht. Dazu wurden dünne Filme des Polymers auf leitfähigen Substraten elektrochemisch oxidiert. Die elektrochemische Oxidation erfolgte mittels Rasterkraftmikroskopie in Kombination mit leitfähigen Mikroskopspitzen. Mittels dieser Technik gelang es, die Oberfläche des Polymers im nanoskaligen Bereich zu oxidieren und somit die lokale Leitfähigkeit zu verändern. Damit konnten unterschiedlich große Muster lithographisch beschrieben und aufgrund der Veränderung ihrer Leitfähigkeit detektiert werden. Der Schreibprozess führte nur zu einer Veränderung der lokalen Leitfähigkeit ohne die topographische Beschaffenheit des Polymerfilms zu beeinflussen. Außerdem erwiesen sich die Muster als besonders stabil sowohl mechanisch als auch über die Zeit.rnrnZum Schluss wurden neue Synthesestrategien entwickelt um mechanisch stabile als auch redox-funktionale Oberflächen zu produzieren. Mit Hilfe der oberflächen-initiierten Atomtransfer-Radikalpolymerisation wurden gepfropfte Polymerbürsten mit redox-funktionalen Phenothiazin-Seitenketten hergestellt und mittels Röntgenmethoden und Rasterkraftmikroskopie analysiert. Eine der Synthesestrategien geht von gepfropften Aktivesterbürsten aus, die anschließend in einem nachfolgenden Schritt mit redox-funktionalen Gruppen modifiziert werden können. Diese Vorgehensweise ist besonders vielversprechend und erlaubt es unterschiedliche funktionelle Gruppen an den Aktivesterbürsten zu verankern. Damit können durch Verwendung von vernetzenden Gruppen neben den Redoxeigenschaften, die mechanische Stabilität solcher Polymerfilme optimiert werden. rn rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrene derivatives as donors and acceptorsrnrnAlmost 200 years have passed since pyrene was first discovered, and to this day it garners unbroken interest by chemists around the world. One of the most fascinating areas of pyrene chemistry is its selective functionalization, since it is still currently a challenge to specifically functionalize different positions on the molecule.[1]rnIn this work, two new patterns of pyrene substitution have been developed. Under suitable conditions, a fourfold bromination of 4,5,9,10 tetramethoxypyrene is possible to yield eightfold functionalized pyrenes. Based on these molecules a novel series of 1,3,4,5,6,8,9,10-substituted pyrene derivatives was achieved. Synthetic approaches to a non-quinoidal, strong pyrene-4,5,9,10-tetraone based acceptor have been discussed. It emerged that the chosen synthetic approach is suitable for intermediate acceptors, yet it failed very electron deficient pyrene derivatives. Donors based on 4,5,9,10-tetramethoxypyrene (2,7- and 1,3,6,8-substitued) have been prepared and studied as CT complexes. In the SFB/TR 49 these complexes were analyzed in the solid state. For the first time charge transfer in a non-TTF CT-complex was studied by HAXPES and NEXAFS.rnBased on the works of ZÖPHEL et al.[2] it was possible to obtain an asymmetric 4,9,10 substituted pyrene derivative. This was used as a building block to prepare a non-planar acceptor molecule as well as electron-rich rylene-type molecules. rnFinally, two separate series of molecules intended as emitters for OLEDs were presented. Thermally activated delayed fluorescence (TADF) in OLEDs attracted significant academic interest as it is considered a promising approach to improve the efficiency of fluorescent OLEDs.[3] Our molecules were designed to have a deep blue emission spectrum and a minimal singlet triplet energy gap (∆ES1->T1) while retaining a high fluorescence quantum yield ϕPL. The initial OD series has a small ∆ES1->T1, yet had an insufficient ϕPL for the use in OLEDs. The Py series emitters, in contrast, combine both desired properties and were successfully implemented in efficient OLED devices.rn[1]. T. M. Figueira-Duarte and K. Müllen, Chem. Rev., 2011, 111, 7260-7314.rn[2]. L. Zöphel, V. Enkelmann and K. Müllen, Org. Lett., 2013, 15, 804-807.rn[3]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234-238.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metals price risk management is a key issue related to financial risk in metal markets because of uncertainty of commodity price fluctuation, exchange rate, interest rate changes and huge price risk either to metals’ producers or consumers. Thus, it has been taken into account by all participants in metal markets including metals’ producers, consumers, merchants, banks, investment funds, speculators, traders and so on. Managing price risk provides stable income for both metals’ producers and consumers, so it increases the chance that a firm will invest in attractive projects. The purpose of this research is to evaluate risk management strategies in the copper market. The main tools and strategies of price risk management are hedging and other derivatives such as futures contracts, swaps and options contracts. Hedging is a transaction designed to reduce or eliminate price risk. Derivatives are financial instruments, whose returns are derived from other financial instruments and they are commonly used for managing financial risks. Although derivatives have been around in some form for centuries, their growth has accelerated rapidly during the last 20 years. Nowadays, they are widely used by financial institutions, corporations, professional investors, and individuals. This project is focused on the over-the-counter (OTC) market and its products such as exotic options, particularly Asian options. The first part of the project is a description of basic derivatives and risk management strategies. In addition, this part discusses basic concepts of spot and futures (forward) markets, benefits and costs of risk management and risks and rewards of positions in the derivative markets. The second part considers valuations of commodity derivatives. In this part, the options pricing model DerivaGem is applied to Asian call and put options on London Metal Exchange (LME) copper because it is important to understand how Asian options are valued and to compare theoretical values of the options with their market observed values. Predicting future trends of copper prices is important and would be essential to manage market price risk successfully. Therefore, the third part is a discussion about econometric commodity models. Based on this literature review, the fourth part of the project reports the construction and testing of an econometric model designed to forecast the monthly average price of copper on the LME. More specifically, this part aims at showing how LME copper prices can be explained by means of a simultaneous equation structural model (two-stage least squares regression) connecting supply and demand variables. A simultaneous econometric model for the copper industry is built: {█(Q_t^D=e^((-5.0485))∙P_((t-1))^((-0.1868) )∙〖GDP〗_t^((1.7151) )∙e^((0.0158)∙〖IP〗_t ) @Q_t^S=e^((-3.0785))∙P_((t-1))^((0.5960))∙T_t^((0.1408))∙P_(OIL(t))^((-0.1559))∙〖USDI〗_t^((1.2432))∙〖LIBOR〗_((t-6))^((-0.0561))@Q_t^D=Q_t^S )┤ P_((t-1))^CU=e^((-2.5165))∙〖GDP〗_t^((2.1910))∙e^((0.0202)∙〖IP〗_t )∙T_t^((-0.1799))∙P_(OIL(t))^((0.1991))∙〖USDI〗_t^((-1.5881))∙〖LIBOR〗_((t-6))^((0.0717) Where, Q_t^D and Q_t^Sare world demand for and supply of copper at time t respectively. P(t-1) is the lagged price of copper, which is the focus of the analysis in this part. GDPt is world gross domestic product at time t, which represents aggregate economic activity. In addition, industrial production should be considered here, so the global industrial production growth that is noted as IPt is included in the model. Tt is the time variable, which is a useful proxy for technological change. A proxy variable for the cost of energy in producing copper is the price of oil at time t, which is noted as POIL(t ) . USDIt is the U.S. dollar index variable at time t, which is an important variable for explaining the copper supply and copper prices. At last, LIBOR(t-6) is the 6-month lagged 1-year London Inter bank offering rate of interest. Although, the model can be applicable for different base metals' industries, the omitted exogenous variables such as the price of substitute or a combined variable related to the price of substitutes have not been considered in this study. Based on this econometric model and using a Monte-Carlo simulation analysis, the probabilities that the monthly average copper prices in 2006 and 2007 will be greater than specific strike price of an option are defined. The final part evaluates risk management strategies including options strategies, metal swaps and simple options in relation to the simulation results. The basic options strategies such as bull spreads, bear spreads and butterfly spreads, which are created by using both call and put options in 2006 and 2007 are evaluated. Consequently, each risk management strategy in 2006 and 2007 is analyzed based on the day of data and the price prediction model. As a result, applications stemming from this project include valuing Asian options, developing a copper price prediction model, forecasting and planning, and decision making for price risk management in the copper market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new organic semiconductors, in which either two methoxy units are directly linked to a dibenzotetrathiafulvalene (DB-TTF) central core and a 2,1,3-chalcogendiazole is fused on the one side, or four methoxy groups are linked to the DB-TTF, have been synthesised as active materials for organic field-effect transistors (OFETs). Their electrochemical behaviour, electronic absorption and fluorescence emission as well as photoinduced intramolecular charge transfer were studied. The electron-withdrawing 2,1,3-chalcogendiazole unit significantly affects the electronic properties of these semiconductors, lowering both the HOMO and LUMO energy levels and hence increasing the stability of the semiconducting material. The solution-processed single-crystal transistors exhibit high performance with a hole mobility up to 0.04 cm2 V−1 s−1 as well as good ambient stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many organisms, including plants, nucleic acid bases and derivatives such as caffeine are transported across the plasma membrane. Cytokinins, important hormones structurally related to adenine, are produced mainly in root apices, from where they are translocated to shoots to control a multitude of physiological processes. Complementation of a yeast mutant deficient in adenine uptake (fcy2) with an Arabidopsis cDNA expression library enabled the identification of a gene, AtPUP1 (for Arabidopsis thaliana purine permease1), belonging to a large gene family (AtPUP1 to AtPUP15) encoding a new class of small, integral membrane proteins. AtPUP1 transports adenine and cytosine with high affinity. Uptake is energy dependent, occurs against a concentration gradient, and is sensitive to protonophores, potentially indicating secondary active transport. Competition studies show that purine derivatives (e.g., hypoxanthine), phytohormones (e.g., zeatin and kinetin), and alkaloids (e.g., caffeine) are potent inhibitors of adenine and cytosine uptake. Inhibition by cytokinins is competitive (competitive inhibition constant Ki = 20 to 35 μM), indicating that cytokinins are transported by this system. AtPUP1 is expressed in all organs except roots, indicating that the gene encodes an uptake system for root-derived nucleic acid base derivatives in shoots or that it exports nucleic acid base analogs from shoots by way of the phloem. The other family members may have different affinities for nucleic acid bases, perhaps functioning as transporters for nucleosides, nucleotides, and their derivatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescent dye-labeled DNA primers have been developed that exploit fluorescence energy transfer (ET) to optimize the absorption and emission properties of the label. These primers carry a fluorescein derivative at the 5' end as a common donor and other fluorescein and rhodamine derivatives attached to a modified thymidine residue within the primer sequence as acceptors. Adjustment of the donor-acceptor spacing through the placement of the modified thymidine in the primer sequence allowed generation of four primers, all having strong absorption at a common excitation wavelength (488 nm) and fluorescence emission maxima of 525, 555, 580, and 605 nm. The ET efficiency of these primers ranges from 65% to 97%, and they exhibit similar electrophoretic mobilities by gel electrophoresis. With argon-ion laser excitation, the fluorescence of the ET primers and of the DNA sequencing fragments generated with ET primers is 2- to 6-fold greater than that of the corresponding primers or fragments labeled with single dyes. The higher fluorescence intensity of the ET primers allows DNA sequencing with one-fourth of the DNA template typically required when using T7 DNA polymerase. With single-stranded M13mp18 DNA as the template, a typical sequencing reaction with ET primers on a commercial sequencer provided DNA sequences with 99.8% accuracy in the first 500 bases. ET primers should be generally useful in the development of other multiplex DNA sequencing and analysis methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well known that that there is an intrinsic link between the financial and energy sectors, which can be analyzed through their spillover effects, which are measures of how the shocks to returns in different assets affect each other’s subsequent volatility in both spot and futures markets. Financial derivatives, which are not only highly representative of the underlying indices but can also be traded on both the spot and futures markets, include Exchange Traded Funds (ETFs), which is a tradable spot index whose aim is to replicate the return of an underlying benchmark index. When ETF futures are not available to examine spillover effects, “generated regressors” may be used to construct both Financial ETF futures and Energy ETF futures. The purpose of the paper is to investigate the covolatility spillovers within and across the US energy and financial sectors in both spot and futures markets, by using “generated regressors” and a multivariate conditional volatility model, namely Diagonal BEKK. The daily data used are from 1998/12/23 to 2016/4/22. The data set is analyzed in its entirety, and also subdivided into three subset time periods. The empirical results show there is a significant relationship between the Financial ETF and Energy ETF in the spot and futures markets. Therefore, financial and energy ETFs are suitable for constructing a financial portfolio from an optimal risk management perspective, and also for dynamic hedging purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ESAT 2014. 27th European Symposium on Applied Thermodynamics, Eindhoven University of Technology, July 6-9, 2014.